

From Integrative Informatics to Passing the Turing Test in Rare Disease Diagnosis

PRISME Forum

John Reynders, VP Data Sciences, Genomics, and Bioinformatics Alexion Pharmaceuticals

November 21st, 2019

Some slides from an external presentation...

The Problem: Silos of Silos

Tools, application, and data are standalone with limited interaction
Scientists have great difficulty finding their data and associated tools
Asking cross-domain questions (e.g. bio+chem) very difficult
Support becoming very impractical – hundreds of individual tools across silos

Genomics and Integrative Biology: High Content-High Resolution

Our Collective Challenge:

We must go beyond domain-specific tools for user-specific tasks...

....to establish beachheads which aggregate data and tools into compound-centric and target-centric views which in turn...

...enable a broader community of scientists to improve their productivity through integrated data & tool access while..

...providing the informatics and computational science tool development community a clear insertion path for new capability.

Do these challenges sound familiar?

So, when was this presentation?

Discovery Informatics: Biomarkers and Chemogenomics

Bio-IT World Conference + Expo May 17th, 2005 – Boston, MA

John Reynders Information Officer - LRL Discovery and Development Informatics

Integrative Data Sciences – Challenge 1

"Big"

Capture, process, filter, and manage the global and growing avalanche of internal and external scientific and clinical data

Finding Relationships Across Arbitrary Data through Ontologies

Non-obvious Relationship Analysis

Generate/Test hypotheses across heterogeneous classes of data

"Connect the dots" between concepts related across multiple classes of Data – but unrelated within any one class of data

Integrative Data Sciences – Challenge 2

Information Fusion

Semantically integrate and navigate massive, heterogeneous, and distributed data sets

Capture, process, filter, and manage the global and growing avalanche of internal and external scientific and clinical data

"Big"

Remember this Famous Match?

But did you know...

In 1997, Deep Blue was the 259th most powerful supercomputer capable of calculating 11.38 gigaflops Today, 4 iphones ~ 12 gigaglops

But did you know...

In 1997, Deep Blue was the 259th most powerful supercomputer capable of calculating 11.38 gigaflops Today, 4 iphones ~ 12 gigaglops

Any guesses on peak speed here?

But did you know...

In 1997, Deep Blue was the 259th most powerful supercomputer capable of calculating 11.38 gigaflops Today, 4 iphones ~ 12 gigaglops

Any guesses on peak speed here?

Isn't surprising how little computational power is required to match human-like reasoning in a specific domain?

Key Themes in Artificial Intelligence in **Rare Disease Diagnosis**

Computational Learning

Information Fusion

"Big Data"

Semantically integrate and navigate complex, heterogeneous, and distributed data

Computational hypothesis generation,

rare disease diagnosis

data interpretation, decision support, and acceleration of human insight to enable

3

The Alexion Insight (AI) Engine

UniProt

Genetics Home Reference

A Data Sciences Rare Disease Map that provides a multi-dimensional overview of the rare-disease landscape

OMIM

amazon webservices

Pub Med

Exhaustive Rare Disease Inventory

- There are approximately 9,500 rare diseases reported in Orphanet – all captured in our data graph
- Cross-referenced w/ OMIM, MESH, UMLS, MedRA, GHR, ICD-10

Incidence/Prevalence

- Data Mining of registry and genetic information
- Expert curation of journals
- Triage of disease rarity

Disease Demographics

 Ages of onset, ethnicity localization, and windows of intervention

Disease Biology

- Detailed mapping of genetic mutations in each target disease
- ORDO functional disease grouping
- DisGeNet to source pathway and biomarker

Intervention Opportunities

- On-Market medicines available for each disease
- Integration of ongoing trials from clinicaltrials.gov
 Orphand WHO database
 - Ongoing research activities linked to medicines

Phenotype & Severity

4

- Cross-reference every disease with HPO/SNOMED-CT terms
- Classify disease severity via tunable phenotype weighting models

Decision Support for Rare-Diseases

Leverage the Alexion Insight Engine to create a graph of every phenotype connected to every diseases

Mathematics and machine learning integrated to build a graph-based "twenty questions" framework

$$\mu_{X_{j+1}}^{*} = \frac{\sum_{i=1}^{D} w_{i} * \left(\frac{P(X_{j+1}|Z = i) - \mu_{X_{j+1}}}{\sum_{i=1}^{D} w_{i}} \right)}{\sum_{i=1}^{D} w_{i}}$$

$$\mu_{X_{j+1}}^{*} = \frac{\sum_{i=1}^{D} w_{i} * Pr(X_{j+1}|Z = i)}{\sum_{i=1}^{D} w_{i}}$$

 $w_i = \Pr(Z = i | X_j, \dots, X_1)$

Piloting with multiple partners to optimize Bayesian priors and correlations for rare-disease differential diagnosis

Let me tell you a story

Smart Panel

Enabling the Diagnosis of <u>any</u> patient with a rare genetic disease

Combining our data graph with an Alexion Bioinformatics machine learning system we are researching how we can turn patient observations into a dynamic sequencing panel

The SmartPanel

Accelerating the diagnosis of rare genetic diseases

A dynamic custom panel optimized for each patient's unique phenotype Prioritize where first to look for a pathogenic mutation amidst three billion base pairs of a patient's DNA

