> Technology Practice

Bristlecone, the 72-qubit quantum chip, Google

Accelerating Drug Discovery with Disruptive Technologies : Quantum Computing

Dr. Bhushan Bonde UCB Pharma

Why Quantum Computing?

Chess (Shatranj) discovery

 $1 + 2 + 2^2 + 2^3 + \dots + 2^{63} = 2^{64} - 1$ 18,446,744,073,709,551,615

"..... speed, memory, and processing capacity of any possible future computer equipment are limited by specific physical barriers: the light barrier, the quantum barrier, and the thermodynamical barrier." ...1965 quote by Prof. Hans-Joachim Bremermann (1926–1996)

ucb

Bit vs Qubit

Either 0 or 1 One out of 2^N possible permutations

Basics of Quantum Computer

Superposition

ucb

Entanglement

Error Rate/Probability

Ref: The quantum needle of the avian magnetic compass, Hiscock et.al, PNAS (2016) 113 (17) 4634-4639.

Quantum Computer

Healthcare, Medicine & Materials

Untangling the complexity of molecular and chemical interactions leading to the discovery of new medicines and materials

QC: Solving Computational Biology

>Technology Practice

UCB QC: Drug Activity prediction

 $R + L \xleftarrow{k_1}{\leftarrow} RL$

Protein-ligand separation

Protein-ligand separation

RC

conformational selection

induced fit

 $\stackrel{k_1}{\longleftrightarrow} \mathbb{R}^{\mathbb{F}} L \stackrel{k_3}{\longleftrightarrow} \mathbb{R} L$

 $\stackrel{k_c}{\longleftrightarrow}$ R + L $\stackrel{k_1}{\longleftrightarrow}$ RL

Conventional (binary) computing:

- Solve simultaneously ~ 1200 differential equations
- Uses 200-300 processor cores and 100 -250 GB RAM.
- Time: ~ 3 to 15 days/experiment based on Algorithm (MC, SPO etc)

Quantum Computing:

- 4-5 Qubit -> solve in parallel -> min to hr. with IBM Q multiple runs
- 20 Qubit (not performed yet)-> quicker and larger data handling.
- Higher Qubit (~70-100) -> n-dim optimisation, accurate and fast results in seconds, real time experiments in the lab
- Handles multiple 1048 well plates data in parallel.

∆G#

∆G[#]

ΔG

ΔG1 ∆G⁰

Supply Chain & Logistics

Finding the best solutions for ultra-efficient logistics and global supply chains, such as optimizing fleet operations for deliveries during the holiday season

Healthcare, Medicine & Materials

Untangling the complexity of molecular and chemical interactions leading to the discovery of new medicines and materials

Artificial Intelligence, Machine Learning

Making facets of AI such as machine learning much more powerful when data sets are very large, such as in searching images or video

Financial Services

Finding new ways to model financial data and isolating key global risk factors to make better investments

Data search, encryption and security

Enabling faster data searching and sorting in big data Using quantum-safe (qubit) encryption algorithms

Algorithm and Application Domains

Quantum Fourier Transform, Bernstein-Vazirani algorithm, Deutsch-Josza algorithm ¹					
Hidden Shift algorithm ² – M. Roetteler (Microsoft)	Grover's algorithm ⁴ – D. Maslov (NSF)				
Fault-tolerant quantum error detection ³ – K. Brown (Georgia Tech.)					
Quantum game theory and Nash equilibria ⁵ – N. Solmeyer (Army Research Lab)					
Renyi entropy measurement of a Fermi-Hubbard model system ⁶ – S. Johri (Intel)					
Quantum scrambling and out-of-time-order correlators ⁷ – N. Yao (UC Berkeley)					
Quantum machine learning ⁸ – A. Ortiz (NASA)					
Neural-network-based qubit readout ⁹ – A. Seif (QuiCS/UMD)					
Bacon-Shor quantum error correction codes ¹⁰ – T. Yoder (Harvard)					
Quantum Approximate Optimization (QAOA) of critical states ¹⁰ – T. Hsi Omar Shehab eh					

Deuteron VQE¹¹ – R. Pooser (Oak Ridge)

1) S. Debnath et al. Nature 536 (2016) 2) NML et al., PNAS 114, 13 (2017) 3) NML et al., Sci Adv. 3, 10 (2017) 4) C. Figgatt et al., Nat. Communs. 8, 1918 (2017) 5) N. Solmeyer et al., QST 3 045002 (2018) 6) NML et al., Phys. Rev. A 98, 052334 (2018) 7) K. A. Landsman et al., arxiv 1806.02807 8) D. Zhu et al., arXiv 1812.08862 (2018) 9) A. Seif et al., J. Phys. B 51 174006 (2018) 10) Ho, Wen Wei & H. Hsieh, Timothy. (2018). 11) E Dumitrescu et.al., Phys. Rev. Let 120, 210501 (2018) and Shehab et al. arXiv:1906.00476v1 (2019)

Industrial Landscape

Imil	BM			VC Company ¹⁴	God	gle	
Microsoft rigetti							
		IBM.	rigetti	•		Google	
T A R L	TECHNOLOGY	Quantum gates	Quantum gates		Quantum annealing	Quantum gates	
	QUBIT QUALITY REQUIRED	Very high	Very high		High	Very high	
	QUANTUM GATES	Necessary	Necessary		Not used	Necessary	
~	QEC*	Essential	Essential		Not essential	Essential	
A R E	NEAR-TERM APPLICATION	No, QEC needed	No, QEC needed		Yes	No, QEC needed	
	QUBIT NUMBER FOR QUANTUM ADVANTAGE	10 ⁶ - 10 ⁷	10 ⁶ - 10 ⁷		Unclear	10 ⁶ - 10 ⁷	
	UNIVERSAL QUANTUM COMPUTATION	Short-term: No Long-term: Yes	Short-term: No Long-term: Yes		Short-term: No Long-term: Unclear	Short-term: No Long-term: Yes	
	QUANTUM COMPUTING IN THE CLOUD	Yes	Yes		Yes	Undefined	
	QUANTUM LANGUAGE	QISKit	Forest		Qbsolv	Unknown	
	CODEBASE LANGUAGE	Python	Python		Python	Python	
	COMPATIBLE WITH OTHER PLATFORMS	No	No	Yes, compatible with all other QC	No	No	
	TARGET USERS	Big corporations, research centers	Undefined		Big corporations, research centers	Undefined	
	PRICE	Expensive, but some free services	Undefined		Expensive	Undefined	
	FREE SERVICES	Yes	Yes		No	No	
	COMMUNITY FOCUSED	Yes	Yes		No	No	
	OPEN ACCESS TO QA** LIBRARIES	No	No	Yes	Yes	No	
	REWARDS TO	No	No		No	No	

۱

Bristlecone, the 72-qubit quantum chip, Google

Quantum Advantages & Challenges

Advantages:

- Parallel computing without parallel hardware
- Maximum of parallel processes: simultaneously processing the whole input
- New paradigm shift: Possible to find the best optimal solution, which is impossible to achieve for a given problem

Challenges:

- **Probabilistic** nature of quantum physics in measurement, readout, sampling
- Early stage of Quantum computing, need further development in problem abstraction
- Need newer algorithms development

•No quantum memory (yet?)

Quantum data storage discovered

Age of Quantum Computer ... is here!!!

Quantum computers will not replace classical computers

• Solve classical computing limiting problems - processing power, time, energy and efficiency

Quantum computing has the potential of largest "new" technology

- Over the next decade, will solving the complex problems in various technology sector,
- Particle/Material research, Next Gen Batteries, Green Fertilizers, Weather forecasting ...

Quantum-safe security will play a crucial role for data encryption

• Secure data/internet communication

Quantum computers will accelerate drug discovery and health solutions

• 3D Molecular conformation and chemical structure search from all known chemical compounds

Quantum optimization will enable AI and Machine learning algorithm

• Perform better learning, promising to achieve the performance of biological brain

Acknowledgements

UCB IT Early Solutions Innovation Development

Daniel Chapman Kris Jansson Pieter Deurinck Herman De Prins

Thank you