Building Next Generation Clinical Trials Imaging & Sensor-based technologies

Timothy J McCarthy, Ph.D. Digital Medicine & Translational Imaging Early Clinical Development

Patient Centered Assessments

Digital Medicine & Translational Imaging

Vision and Impact

Provide end-to-end expertise in the emerging fields of translational imaging, wearable technologies, & continuous monitoring to improve clinical trials and increase the value of medicines for patients

Develop novel digital and imaging endpoints relevant to patients

Quantify Proof of Mechanism & Signs of Clinical Activity

Map path to label for digital data with Regulatory Agencies

Collaborate across the enterprise

WORLDWIDE RESEARCH, DEVELOPMENT AND MEDICAL

Outline of today's talk

- Some definitions
- Examples
 - Atopic Dermatitis
 - Duchenne Muscular Dystrophy
- Regulatory considerations
- Our laboratory set-up in Cambridge

Different types of digital technologies in clinical research

Digital Technology	Goal	
Electronic platforms for recruiting, retention, and data collection	Improve trial management	
EDC, eSource, ePRO	Improve quality of data	
Digital endpoints	Improve assessment of treatment effect or treatment response	
Digital therapeutics	Improve treatment	

Adapted from Sverdlov, et al, Clin. Pharm. Ther. 104, 72-80 (2018)

What do we mean by Digital Endpoints?

Atopic dermatitis (AD) – the itch that rashes

Symptoms: severe itch and sleep disruption (significant issue for patients at night)

Current endpoints: Patient Reported Outcomes (questionnaire)

Goal: Develop objective sensor-based technique to quantify scratch and sleep disruption

How can we quantify scratch / sleep disruption?

Moreau et al, IEE J Biomed Health Informatics, 22, 1011-1018 (2017)

How do we identify a scratching episode?

Moreau et al, IEE J Biomed Health Informatics, 22, 1011-1018 (2017)

Duchenne Muscular Dystrophy (DMD) – need for new biomarkers and clinical endpoints

Progressive muscle disease, fatty infiltration, **loss of ambulation**, respiratory and cardiac complications

Current endpoints: Four-step climb and six-minute walk distance

Challenges of Clinical Functional Assessments for DMD

- Patient compliance
- Single time point
- Maturing population
- Day-to-day variability

- Less focus on quality of movement
- Slow to demonstrate benefit
- May not predict loss of ambulation
- Sensitivity to change is poor

Can wearables capture provide objective assessments of activity in a continuous fashion?

- Continuous measures represent real patient performance during daily life
- Possibility of averaging the data over a period of time (e.g.1 month)
- Reduce dependency of short term clinically meaningless variations that may strongly affect a time-specific assessment.

ActiMyo device – developed by Institute of Myology & Sysnav

Use device to calculate: Stride Velocity 95th Centile (SV95C)

- SV95C: measuring top velocity, but is not dependent upon motivation as the 6MWT
- Loss of top velocity is something patients are very aware of

WORLDWIDE RESEARCH, DEVELOPMENT AND MEDICAL

www.institut-myologie.org

Steps to qualify the ActiMyo

Validity of gait measurements	 Demonstrate distance measured by device corresponds to ground truth measured manually 		
Reliability of measurement	 Assess all gait variables Influence of poor compliance to identify recommended minimal use 		
Cross validation	 6MWT (Six Minute Walk Test) NSAA (North Star Ambulation Assessment) 		
Sensitivity to change	 Over 6 months and 1 year Patients over 7 years old walking less than 450m in 6MWT 		

20 September 2018 EMA/CHMP/SAWP/527447/2018 Product Development Scientific Support Department

Draft qualification opinion on stride velocity 95th centile as a secondary endpoint in Duchenne Muscular Dystrophy measured by a valid and suitable wearable device*

https://www.ema.europa.eu/documents/regulatory-procedural-guideline/draft-qualification-opinion-stride-velocity-95th-centile-secondary-endpoint-duchenne-muscular_en.pdf

Draft Context of Use adopted by CHMP

Context of use: Ambulant DMD patients 5 years of age and above.

SV95C measured at ankle is an acceptable secondary endpoint in pivotal or exploratory drug therapeutic studies for regulatory purposes when measured by:

• suitable wearable device* | directly in continuous manner | in home environment

SV95C may also be used to quantify patient's baseline performance in such studies

However, for use as primary endpoint:

- More robust data gained with additional patients and longer follow-up could be beneficial
- Strengthening the long term correlation to SV95C with functional tests

*Definition of suitable wearable device from CHMP

Device	 Technical requirements Placement location on body (ankle worn) Capabilities: stride detection (slow to fast); segmentation of stride; stride length and velocity
Software	Tests of security Software development standards Secure communication
GCP	 Assurance of GCP standards Complete audit trail from device to the clinical trial database must be established Patient privacy must be protected
Data & analytics	 Where data stored Transfer to internet – dedicated secure site Computation of variables- recording does not rely on individual calibration
Context	Ability to be used continuously, including home environment

https://www.ema.europa.eu/documents/regulatory-procedural-guideline/draft-qualification-opinion-stride-velocity-95th-centile-secondary-endpoint-duchenne-muscular_en.pdf

Pfizer Innovation Research Lab, Cambridge, MA

- Compliant instrumented laboratory environment
- Ability to recruit participants for non-interventional studies
- Designed to test novel sensors
- Compare to ground truth measurements
- Major help from many stakeholders across Pfizer

STRYDE Study: <u>Sensors</u> <u>To</u> <u>Record</u> <u>Your</u> <u>Daily</u> <u>Exercise</u>

Acknowledgements - thank you

Digital Medicine & Translational Imaging colleagues Our collaborators and volunteers Thank you for your attention!

