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Machine Learning & Al can help us doing so
... by simulating human behavior (intelligently)

= " = | | =— “Al is the new electricity...just as electricity transformed industry
after industry 100 years ago, I think Al will do the same.”

Andrew Ng, founder of Google Brain & Coursera, now at Baidu
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Why now?

Advances in HW and SW have transformed what is possible

~1 million times more compute power Algorithmic advancements
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Our approach
... to transforming drug discovery with ML & Al
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Becoming BETTER with Al

Examples from epigenetics of Heart Failure and CRISPR gRNA design
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Becoming BETTER with Al
Examples from epigenetics of Heart Failure and CRISPR gRNA design
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Doench et al. (2014) Nature Biotech, doi:10.1038/nb

The CRISPR Craze
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Conformal Prediction — why do we care?




Machine Learning - Traditional way

Training set Model
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Machine Learning — conformal prediction
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Model creates distribution
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Machine Learning — conformal prediction for the unseen
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Becoming BETTER
Using GANSs for spheroid segmentation

Variation in spheroid
appearance make
traditional solutions
ineffective

Deep networks output
weighted prediction
maps that can more
easily be segmented
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Becoming BETTER at assessing DILI risk
by integrating data across a multitude of assays
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Becoming BETTER

through RNN based automated de-novo molecule design
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Becoming FASTER with Al
Through unsupervised learning for hit identification
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Becoming FASTER
... through transfer learning for HTS

Using CNN pre-trained on
general image data for
microscopy to abandon screen
specific training efforts

Hit ID with limited effort &
identification of artifacts
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Classification

Becoming FASTER
by optimizing vector design
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Beco m i n g B ETTE R & FASTE R Choose the most informative cells to

efficiently expand training set
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Becoming CHEAPER
by automating tissue segmentation

Understanding tissue distribution of
inhaled therapies requires accurate
physiological classification from tissue
samples.

Using a combination of machine
learning and rule based artificial
intelligence leads to robust
segmentation of fluorescence
microscopy images of lung tissue.
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Saving resources in pathology
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Becoming CHEAPER
... by focusing our chemistry synthesis effort:__.
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Becoming BETTER, FASTER and CHEAPER with Al
By automating drug discovery

Generated Molecules

Solution:  Structure
generation and

learning ...
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Olivecrona et al. https://arxiv.org/abs/1704.07555
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With a culture embracing what ML & Al can do...
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