
 
Machine learning in single cell genomics 

Fabian J. Theis 

Institute of Computational Biology, Helmholtz Center Munich &  
Department of Mathematics, TU Munich 

       www.comp.bio             @fabian_theis

http://www.comp.bio


big data in biology & biomedicine

sequencing &  
multi-omics

phenomics & 
perturbations

imaging

single cell profiling



Big data analytics?  → machine learning



AI, machine & deep learning

NVIDIA



T Blasi et al Nat Comm 2015; P Eulenberg, N Koehler, A Wolf, Nat Comm 2017

Input

Global Average 
PoolingCNN Feed Forward

Feature Extraction

Classification

Visualization

Softmax

G1
S
G2
Prophase

Metaphase
Anaphase
Telophase

TSNE

...

Image Flow Cytometry DeepFlow Feature Extraction
on raw images

Classification + Visualization

Fig 1. Overview of DeepFlow — deep learning data analysis for imaging

flow cytometry. Images from all channels of the Imaging Flow Cytometer are
uniformly resized, and input directly into the neural network, which is trained on the
classification task. The learned features serve for both the classification objective and
the visualization task.

Introduction 44

A major current challenge and opportunity in biology is interpreting the increasing 45

amount of information-rich and high-throughput single-cell data. Here, we consider 46

imaging data from fluorescence microscopy [1], in particular from imaging flow 47

cytometry [2]. Imaging flow cytometry (IFC) combines the fluorescence sensitivity and 48

high-throughput capabilities of flow cytometry with single-cell imaging. Relevant 49

fluorescent labels are chosen to assess certain phenotypes of interest. The large number 50

of single cells analyzed per sample — often hundreds of thousands — makes imaging 51

flow cytometry unusually well-suited to deep learning, which demands very large 52

training sets. 53

Further, IFC generates high-dimensional information for each cell, including 54

spatially-mapped intensity information for thousands of pixels for each of several 55

channels: brightfield and darkfield (which require no staining procedure) and, optionally, 56

several fluorescence channels. This means a dramatic increase in information content as 57

compared to the measurement of a single spatially integrated fluorescence intensity 58

value for each channel, as in conventional flow cytometry [3]. Finally, IFC provides one 59

image for each single cell, and hence does not require whole-image segmentation. 60

It is often not known in advance which morphological features are useful to 61

distinguish specific, often rare, phenotypes in IFC. Classical computer vision algorithms 62

are unlikely to extract sufficient metrics to capture all relevant morphological features. 63

Deep learning, by contrast, potentially captures many more subtleties of image data. 64

Here, we present the deep learning based data analysis workflow DeepFlow — deep 65

learning for imaging flow cytometry. It consists of a deep convolutional neural network 66

combined with a standard softmax classifier and a visualization tool based on non-linear 67

dimension reduction (Fig. 1). 68

DeepFlow enables improved data analysis capabilities for IFC as compared to prior 69

traditional machine learning methods [4–7]. This is mainly due to three general 70

advantages of deep learning over traditional machine learning: there is no need for 71

cumbersome preprocessing and manual feature definition, classification accuracy is 72

improved and learned features can be visualized to uncover their biological meaning. 73

Other recent work on deep learning in high-throughput microscopy either relied on 74

engineered features [8], focused on whole-image segmentation without addressing 75

visualization of network features [9]. Reference [10] is most closely related to the present 76

work, but neither presents an optimized solution to Imaging Flow Cytometry data, nor 77
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→ mean learning accuracy 98.4% (10-fold CV)
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The unsupervised detection of a discrete cluster of abnormal
cells for the Jurkat cell data indicates that the neural network
learns the cluster of abnormal cells independently of the cell-
cycle-label based training. The model is therefore not only cap-
able of resolving a biological process, but generates features that
are general enough to separate incorrectly labeled cells that do not
belong to the process. None of the mentioned pseudotime algo-
rithms is capable of this. This shows the ability of deep learning to
find unknown phenotypes and processes without knowledge
about features or labels. Also, there is a high practical use of the
detection of damaged cells. The Jurkat cell data set has been
preprocessed using the IDEAS analysis software to remove images
of abnormal cells. In particular, out of focus cells were removed
by gating for images with gradient RMS and debris was removed
by gating for circular objects with a large area. The discovery of a
cluster of abnormal cells shows the limitations of this approach
and provides a solution to it.

An advantage of using a neural network for cell classification in
IFC is its speed. Traditional techniques rely on image segmen-
tation and measurement, time-consuming processes limited to
roughly 10 cells per second. Neural network predictions, by
contrast, are extremely fast, as the main computation consists in
parallelizable matrix multiplications (“forward propagations”),
which can be performed using optimized numeric libraries. This
yields a roughly 100-fold improvement in speed to about 1000
cells per second with a single GPU. Aside from much faster
analysis of large cell populations, this opens the door to “sorting
on-the-fly”: imaging flow cytometers currently do not allow
physically sorting individual cells into separate receptacles based
on measured parameters, due to these speed limitations.

Given the compelling performance on reconstructing the cell
cycle and diabetic retinophany, we expect deep learning to be
helpful for understanding a wide variety of biological processes
involving continuous morphology changes. Examples include
developmental stages of organisms, dose response and the pro-
gression of healthy states to disease states, situations that have
often been non-ideally reduced to binary classification problems.
Ignoring intrinsic heterogeneity has likely hindered a deeper
insight into the mechanisms at work. Analysis as demonstrated
here could reveal morphological signatures at much earlier stages
than previously recognized.

Our results indicate that reconstructing biological processes is
possible for a wide variety of image data, if enough samples are
available. Although generally lower-throughput in terms of the
number of cells processed, conventional microscopy is never-
theless still high-throughput and can usually provide higher
resolution images than IFC. Furthermore, given that multi-
spectral methods are advancing rapidly, imaging mass spectro-
metry is allowing dozens of labeled channels to be acquired20, 21.
Due to its basic structure and high flexibility, a deep learning
framework like the one presented here can accommodate a large
increase in the number of available channels.

We acknowledge discussions with the authors of related work,
which became available as a preprint just before publication of the
present paper22.

Methods
In the data set of 32,266 Jurkat cells, labeling is based on two fluorescent stains:
propidium iodine (PI) to quantify each cell’s DNA content and the mitotic protein
monoclonal #2 (MPM2) antibody to identify cells in mitotic phases. These
stains allow each cell to be labeled through a combination of algorithmic seg-
mentation, morphology analysis of the fluorescence channels, and user inspection5.
Note that 97.78% of samples in the data set belong to one of the interphase classes
G1, S, and G2. The strong class imbalance in the data set is related to the fact that
interphase lasts—when considering the actual length of the biological process—a
much longer period of time than mitosis.

Recent advances in deep learning have shown that deep neural networks are
able to learn powerful feature representations23–26. Based on the widely used
“Inception” architecture25, we developed the “DeepFlow” architecture, which is
optimized for the relatively small input dimensions of IFC data. DeepFlow consists
in 13 three-layer “dual-path” modules (Supplementary Fig. 3), which process and
aggregate visual information at an increasing scale. These 39 layers are followed by
a standard convolution layer, a fully connected layer and the softmax classifier.
Training this 42-layer deep network does not present any computational difficulty,
as the first three layers consist in reduction dual-path modules (Supplementary
Fig. 3b), which strongly reduce the original input dimensions prior to convolutions
in the following normal dual-path modules. The number of kernels used in each
layer increases towards the end, until 336 feature maps with size 8 × 8 are obtained.
A final average pooling operation melts the local resolution of these maps
and generates the last 336-dimensional layer, which serves as an input for both
classification and visualization.

This neural network operates directly on uniformly resized images. It is trained
with labeled images using stochastic gradient descent with standard parameters
(Supplementary Notes). For the IFC data, we focus on the case in which only
brightfield and darkfield channels are used as input for the network, during
training, visualization and prediction. As stated before, this case is of high
interest as a fluorescent markers might affect the biological process under
study or adequate markers are not known. We note, however, that technical
imperfections in the IFC data capture might always lead to a minor amount of
fluorescence signal, activated by a fluorescence channel, in the darkfield and
brightfield channels, a phenomenon known as “bleed through” (Supplementary
Notes).

Code availability. Code for the DeepFlow architecture and the Jurkat cell data set
is available at https://github.com/theislab/deepflow.

Data availability. The retinopathy data set is available at https://www.kaggle.com/
c/diabetic-retinopathy-detection/data and can be processed with standard packages
and architectures.
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Fig. 6 Reconstruction of disease progression in diabetic retinopathy. a tSNE
visualization of activation space representation, colored according to the
disease states. b Randomly chosen images for each class

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00623-3 ARTICLE

NATURE COMMUNICATIONS |8: �463� |DOI: 10.1038/s41467-017-00623-3 |www.nature.com/naturecommunications 5

application to progression of diabetic retinopathy

example: predicting cell cycle from morphometry

ICB team 2017: winning ranks (7th out of ~2000)



my aim:  
model single-cell decisions

Orkin & Zon, Cell 2008

collab T Schroeder, BSSE, ETH

time-lapse  
microscopy

time

           Gata-1  [au]      

   
   

 P
u.

1 
[a

u]
   

   

Hilsenbeck et al, Nat Biotech 2016 
Hoppe et al, Nature 2016

Buggenthin et al,  
Nature Methods 2017



unbiased description of cellular state by transcriptomics

Angerer et al,  
Curr Op Sys Bio 2017

single-cell genomics

bulk genomics

adapted from Shalek & Regev

single-cell genomics is becoming big data



22 | VOL.11 NO.1 | JANUARY 2014 | NATURE METHODS

SPECIAL FEATURE | COMMENTARY METHOD OF THE YEAR

Challenges in single-cell transcriptomics
Currently available single-cell RNA-seq 
methods were developed with several dif-
ferent objectives. Full-length transcripts 
can be profiled, such that sequence reads 
cover the entire gene to quantify both gene 
and transcript isoforms and also monitor  
single-nucleotide polymorphisms and muta-
tions9,11. In contrast, tag-based sequencing 
of 5v or 3v ends10,13 provides only an estimate 
of transcript abundance at the cost of cov-
erage across gene structures but allows the 
assay to be scaled up and combined with 
molecule counting12. 

The unified goal in the field is to develop 
cost-effective, high-throughput methods 
that detect all RNA present inside the cell at 
full-length RNA coverage. Lowering RNA 
losses and enhancing the conversion of 
RNA to cDNA before amplification are areas 
where further development would boost 
RNA detection. Another important goal is 
to augment procedures for the dissociation, 
sorting and picking of individual cells14 so 
that complex tissues can be dissociated into 
single-cell suspension without inducing 
changes in gene expression related to cell 
handling or picking. Finally, simultaneous 
detection of poly(A)+ and poly(A)– RNA, 
irrespective of transcript length, and RNA 
modifications (for example, m6A in ref. 15) 
are also desirable features for future develop-
ment.

One of the mind-boggling features of 
transcription that only becomes apparent in  
single-cell analysis is that expression of a 
gene that is reliably detected in a population 
may be anywhere from absent, to low, to 

on our understanding and appreciation of 
cellular states, the nature of transcription 
and gene regulation, and our ability to char-
acterize pathological states in disease.

Above the noise
Single-cell transcriptomics relies on the 
reverse transcription of RNA to comple-
mentary DNA and subsequent amplifica-
tion by PCR or in vitro transcription before 
deep sequencing—procedures prone to 
losses or biases. The biases are exagger-
ated by the need for very high amplification 
from the small amounts of RNA found in 
an individual cell. Although technical noise 
confounds precise measurements of low-
abundance transcripts, modern protocols 
have progressed to the point that single-cell 
measurements are rich in biological infor-
mation. For example, a recurrent theme in 
single-cell transcriptome studies is that cells 
reliably group by their cell type or state when 
subjected to unsupervised clustering7–10. 
Gene expression associated with cell identity 
or developmental stages thus has a stronger 
signal than technical noise or biological vari-
ability related to dynamic processes such as 
phase of the cell cycle. Moreover, the power 
to detect meaningful biological differences 
from single-cell data is demonstrated by 
the identification of hundreds to thousands 
of genes with differences in abundances 
between cell types7,9. Recent refinements 
will improve the signal-to-noise ratio even 
further by enhancing the efficiencies of 
reverse transcription and PCR11 or applying 
molecular barcoding strategies that control 
for amplification bias12.

Our notion of transcriptomes has been 
forged mainly by population-level observa-
tions that have been the mainstream in biol-
ogy over the last two decades. We are used to 
thinking about differences in expression in 
terms of graded or subtle fold changes when 
comparing data across entire tissues or con-
ditions. But the actual differences between 
cells may be far larger. Subsets of cells may 
experience dramatic changes that are aver-
aged out or diluted by the presence of a large 
number of nonresponsive cells. In fact, it 
was shown over 60 years ago that inductive 
cues often result in all-or-none responses in 
single cells but these responses are observed 
as a gradual increase when quantified across 
the population1.

It is clear that assessing gene expression 
in single cells is critical to better understand 
cellular behaviors and compositions in 
developing, adult and pathological tissues. 
To this end, a long-standing goal has been to 
enable genome-wide RNA profiling, or tran-
scriptomics, in single cells2,3. Only recently 
has the technology matured so that biologi-
cally meaningful differences can be robustly 
detected with single-cell RNA-seq. Detailed 
protocols4–6 for sequencing library prepara-
tions and the introduction of commercial 
automation (for example, Fluidigm C1) 
have lowered the barriers for researchers to 
access these methods. Widespread adoption 
of these techniques will have a major impact 

Entering the era of single-cell transcriptomics in 
biology and medicine
Rickard Sandberg

Recent technical advances have enabled RNA sequencing (RNA-seq) in single cells. Exploratory studies 
have already led to insights into the dynamics of differentiation, cellular responses to stimulation and the 
stochastic nature of transcription. We are entering an era of single-cell transcriptomics that holds promise 
to substantially impact biology and medicine.

Rickard Sandberg is at the Ludwig Institute 
for Cancer Research, Stockholm, Sweden, and 
Department of Cell and Molecular Biology, 
Karolinska Institutet, Stockholm, Sweden. 
e-mail: rickard.sandberg@ki.se
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the human genome is transcribed, as several 
studies have identified very rare transcripts 
(for example, those present in one copy 
per 10,000 cells)20. These transcripts could 
either be expressed at high levels in rare cells 
(for example, ten copies in one of 100,000 
cells) or have low (leaky) expression in a 
larger subset of cells. Analyses across hun-
dreds or thousands of individual cells will 
likely resolve these questions and improve 
our understanding of cellular transcriptional 
landscapes and regulatory networks.

RNA-seq analyses across human tissues 
and cell populations have demonstrated the 
pervasive use of RNA processing to diversify  
the transcriptome and the proteome21. A 
large fraction of differences are subtle when 
comparing tissues, but it is possible that pat-
terns of alternative splicing, polyadenylation 
and transcription start-site usage will have 
a more bimodal (on or off ) distribution 

from biases, such clustering can reveal all cell 
types present, including new ones. All cells 
in a cluster can also be used to derive robust 
cell-type expression profiles, again in a data-
driven manner and without previous knowl-
edge of which marker genes define a tissue 
or cell type. Single-cell profiling of RNAs 
is therefore the first method that could lay 
a foundation for a quantitative, data-driven 
classification of cell types.

Single-cell transcriptomics will also enable 
high-resolution transcriptional maps of both 
stable and transient cellular states during dif-
ferentiation or reprogramming. Important 
for these aims is to sample sufficient indi-
vidual cells that span the entire process, so 
that analyses can later zoom in on the subset 
of cells at critical bifurcation points of dif-
ferentiation. The sample size should reflect 
how often cell types or events are expected 
to occur. Also, it is debated to what extent 

high in a given cell because of random fluc-
tuations. Such variability may be explained 
by models that describe transcription as 
occurring in discrete bursts16 driven by sto-
chastic molecular processes. The stochastic 
nature of transcription has been studied in 
greatest detail in prokaryotes and unicellu-
lar eukaryotes16, but more and more lines 
of evidence point to similar phenomena 
in mammalian cells17,18. We must there-
fore take into account such transcriptional 
behavior in our strategies for analyzing 
single-cell transcriptome data and in our 
biological interpretation of the results. For 
example, standard differential expression 
tests might not be suitable for single-cell data 
that contain a fair number of cells with no 
detectable expression. Indeed, new tests have 
been proposed19 that combine differences in 
transcript abundance with differences in the 
fraction of cells with expression.

Single-cell transcriptome studies to date 
require cells in suspension (for example, 
dissociated tissues or cultures) so that the 
spatial organization of the population is 
often lost, unless cells had been picked from 
defined areas. Spatial information can be 
recovered to some extent through RNA  
in situ hybridization analyses of marker 
genes for identified cell types, allowing 
cell type–specific expression profiles to be 
projected onto complex tissue structures. 
However, methods that simultaneously cap-
ture spatial structures and transcriptome-
wide profiles at single-cell resolution are 
being developed but have yet to be described 
(for example, building on in situ sequencing 
or array-based multiplexing strategies). The 
ability to perform spatial single-cell tran-
scriptomics on developing, adult or patho-
logical tissues promises to dramatically ele-
vate our understanding of life and disease, 
revealing the transcriptomes related to spe-
cific states of intercellular communication, 
polarity formation and local gradients.

Implications for biology
The measurement of gene expression in 
single cells will revolutionize our under-
standing of gene regulation and resolve 
many longstanding debates in biology. Cells 
cluster by cell type or developmental state 
when grouped according to their expression 
profiles7–10. Thus, expression-based clus-
tering allows for the unbiased reconstruc-
tion or ‘reverse engineering’ of cell types in 
any population or tissue after sequencing 
enough individual cells (Fig. 1). If the sam-
pling of cells is extensive and sufficiently free 
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Figure 1 | Single-cell transcriptome analyses of tissues and cell types. Cells from a healthy or 
pathological tissue are dissociated, analyzed independently with single-cell RNA-seq and clustered 
based on their gene expression profiles. Clustering of cells reveals a cell-type map that can be used to 
assess the composition of the tissue including the identification of new cell types or subtypes. These 
rich data can be used to address many questions of gene expression and regulation within or between 
cell types and between tissues.
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Figure 1 | Single-cell transcriptome analyses of tissues and cell types. Cells from a healthy or 
pathological tissue are dissociated, analyzed independently with single-cell RNA-seq and clustered 
based on their gene expression profiles. Clustering of cells reveals a cell-type map that can be used to 
assess the composition of the tissue including the identification of new cell types or subtypes. These 
rich data can be used to address many questions of gene expression and regulation within or between 
cell types and between tissues.
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preprocessing: scRNAseq denoising using a 
deep count autoencoder

 

Figure 1. DCA denoises scRNA-seq data by learning the data manifold using an autoencoder              

framework. Panel A depicts a schematic of the denoising process adapted from Goodfellow et al. 26 . Red                

arrows illustrate how a corruption process, i.e. measurement noise from dropout events, moves data              

points away from the data manifold (black line). The autoencoder is trained to denoise the data by                  

mapping corrupted data points back onto the data manifold (green arrows). Filled blue dots represent                

corrupted data points. Empty blue points represent the data points without noise. Panel B shows the                

autoencoder with a ZINB loss function. Input is the original count matrix (pink rectangle; gene by cells                 

matrix, with dark blue indicating zero counts) and the mean matrix of the negative binomial component                

represents the denoised output (blue rectangle). Input counts, mean, dispersion and dropout probabilities             

are denoted as x, μ, θ and π.  respectively.  
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DCA increases correlation structure of key regulatory genes  

myeloid hematopoiesis, Paul et al, Cell 2015

 

Figure 9. Denoising by DCA increases correlation structure of key regulatory genes. Panels A 

and B display diffusion maps of blood development into GMP and MEP colored by developmental 

trajectory and celltype, respectively. Abbreviations Ery, Mk, DC, Baso, Mo, Neu, Eos, Lymph correspond 
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visualizing high-dimensional single cell RNA-seq



high-dimensional 
transcript space

visualizing high-dimensional single cell RNA-seq

unequivocally reveals the three cell types known to exist at this
stage (Figure 1A). Ninety-five cells (60%) were highly enriched
in TE-specific markers such as Cdx2 and Krt8. Forty cells

(25%) were specifically enriched in the PE markers Gata4 and
Pdgfra, and eighteen cells (11%) were specifically enriched in
EPI-restricted genes including Nanog and Sox2. Interestingly,
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Figure 1. Three Molecularly Defined Populations at the !64-Cell Stage
(A) A heat map of expression levels for 48 genes (see also Figure S1 and Table S2 for how these were selected) from 159 individual cells collected from !64-cell

stage blastocyst. Cells are defined as trophectoderm (TE), epiblast (EPI), and primitive endoderm (PE) based on their expression of known markers Cdx2, Nanog,

and Gata4, respectively. The asterisk (*) marks five transitional cells with PE and EPI expression characteristics.

(B) Principal component (PC) projections of the 159!64-cell stage cells colored according to their embryo of origin. Encircled by a dashed line are the same five

cells marked by an asterisk in (A).

(C) PC projections of the 48 genes, showing the contribution of each gene to the first two PCs. The first PC can be interpreted as discriminating between TE and

ICM; the second between PE and EPI. The position of endogenous control genes Actb (blue) and Gapdh (red) are shown.
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approach: visualize cellular dynamics by 
analyzing random walks between close-by cells

local diffusion of each cell x

Single-cell diffusion maps

Laleh Haghverdi



Single-cell diffusion maps

Coifman et al. PNAS 2005

Haghverdi et al

Fig. 1: Schematic overview of diffusion maps embedding. A) The n⇥G matrix representation of single-cell data consisting of four different
cell types. The last column on the right side of the matrix (colour band) indicates the cell type for each cell. B) Representation of each cell
by a Gaussian in the G-dimensional gene space. Diffusion paths (continuous paths with relatively high probability density) form on the data
manifold as a result of interference of the Gaussians. The Probability density function is shown in the heat map. C) The n ⇥ n Markovian
transition probability matrix. D) Data embedding on the first two eigenvectors of the Markovian transition matrix (DC1 and DC2) which
correspond to the largest diffusion coefficients of the data manifold. The embedding shows the continuous flow of cells across four cell types,
however it does not suggest the putative time direction.

is usually a detection limit at which lower expression levels and
non-expressed genes are all reported at the same value. Buettner
et al. (2014) suggested the use of a censoring noise model for PCA,
whereas for the other methods it is unclear how these uncertain or
missing values are to be treated. A variety of other manifold learning
methods including (Hessian) Locally-Linear Embedding (HLLE)
(Donoho and Grimes, 2003) and Isomap (Tenenbaum et al., 2000)
exist in the machine learning community and are discussed in detail
in the discussion and conclusion section.

Here, we propose diffusion maps (Coifman et al., 2005) as a
tool for analysing single-cell differentiation data. Diffusion maps
use a distance metric (usually referred to as diffusion distance)
conceptually relevant to how differentiation data is generated
biologically, as cells follow noisy diffusion-like dynamics in the
course of taking several differentiation lineage paths. Diffusion
maps preserve the nonlinear structure of data as a continuum
and are robust to noise. Furthermore, with density normalisation,
diffusion maps are resistant to sampling density heterogeneities and
can capture rare as well as abundant populations. As a nonlinear
dimension-reduction tool, diffusion maps can be applied on single-
cell omics data to perform dimension-reduction and ordering of
cells along the differentiation path in a single step, thus providing
insight to the dynamics of differentiation (or any other concept with
continuous dynamics). In this article, we

• propose an adaptation of diffusion maps for the analysis of
single-cell data which is less affected by sampling density
heterogeneities and addresses the issues relating to missing
values and uncertainties of measurement,

• propose a criterion for selecting the scale parameter in a
diffusion map,

• evaluate the performance of the diffusion map and its
robustness to noise and density heterogeneities using a toy
model that mimics the dynamics of differentiation,

• apply the adapted diffusion map algorithm to two typical
qPCR and one RNA-Seq data sets and show that it captures
the differentiation dynamics more accurately than other
algorithms.

2 METHODS
2.1 Diffusion maps
Let n be the number of cells and let G be the number of genes measured for
each cell. Denote the set of all measured cells by ⌦. We allow each cell x to
diffuse around its measured position x 2 RG through an isotropic Gaussian
wave function,
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Gaussian width �2 determines the length scale over which each cell can
randomly diffuse. The transition probability from cell x to cell y is then
defined by the interference of the two wave functions Yx and Yy . One can
easily show that this interference product is another Gaussian (all prefactors
cancel out):
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Hence, we can construct the n⇥ n Markovian transition probability matrix
P for all pairs of cells in ⌦ as follows:
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At the position of each cell, Z(x) is the partition function which provides
an estimate of the number of neighbours of x in a certain volume defined
by �. Hence it can be interpreted as the density of cells at that proximity.
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Fig. 1: Schematic overview of diffusion maps embedding. A) The n⇥G matrix representation of single-cell data consisting of four different
cell types. The last column on the right side of the matrix (colour band) indicates the cell type for each cell. B) Representation of each cell
by a Gaussian in the G-dimensional gene space. Diffusion paths (continuous paths with relatively high probability density) form on the data
manifold as a result of interference of the Gaussians. The Probability density function is shown in the heat map. C) The n ⇥ n Markovian
transition probability matrix. D) Data embedding on the first two eigenvectors of the Markovian transition matrix (DC1 and DC2) which
correspond to the largest diffusion coefficients of the data manifold. The embedding shows the continuous flow of cells across four cell types,
however it does not suggest the putative time direction.

is usually a detection limit at which lower expression levels and
non-expressed genes are all reported at the same value. Buettner
et al. (2014) suggested the use of a censoring noise model for PCA,
whereas for the other methods it is unclear how these uncertain or
missing values are to be treated. A variety of other manifold learning
methods including (Hessian) Locally-Linear Embedding (HLLE)
(Donoho and Grimes, 2003) and Isomap (Tenenbaum et al., 2000)
exist in the machine learning community and are discussed in detail
in the discussion and conclusion section.

Here, we propose diffusion maps (Coifman et al., 2005) as a
tool for analysing single-cell differentiation data. Diffusion maps
use a distance metric (usually referred to as diffusion distance)
conceptually relevant to how differentiation data is generated
biologically, as cells follow noisy diffusion-like dynamics in the
course of taking several differentiation lineage paths. Diffusion
maps preserve the nonlinear structure of data as a continuum
and are robust to noise. Furthermore, with density normalisation,
diffusion maps are resistant to sampling density heterogeneities and
can capture rare as well as abundant populations. As a nonlinear
dimension-reduction tool, diffusion maps can be applied on single-
cell omics data to perform dimension-reduction and ordering of
cells along the differentiation path in a single step, thus providing
insight to the dynamics of differentiation (or any other concept with
continuous dynamics). In this article, we

• propose an adaptation of diffusion maps for the analysis of
single-cell data which is less affected by sampling density
heterogeneities and addresses the issues relating to missing
values and uncertainties of measurement,

• propose a criterion for selecting the scale parameter in a
diffusion map,

• evaluate the performance of the diffusion map and its
robustness to noise and density heterogeneities using a toy
model that mimics the dynamics of differentiation,

• apply the adapted diffusion map algorithm to two typical
qPCR and one RNA-Seq data sets and show that it captures
the differentiation dynamics more accurately than other
algorithms.

2 METHODS
2.1 Diffusion maps
Let n be the number of cells and let G be the number of genes measured for
each cell. Denote the set of all measured cells by ⌦. We allow each cell x to
diffuse around its measured position x 2 RG through an isotropic Gaussian
wave function,
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Gaussian width �2 determines the length scale over which each cell can
randomly diffuse. The transition probability from cell x to cell y is then
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easily show that this interference product is another Gaussian (all prefactors
cancel out):
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Fig. 1: Schematic overview of diffusion maps embedding. A) The n⇥G matrix representation of single-cell data consisting of four different
cell types. The last column on the right side of the matrix (colour band) indicates the cell type for each cell. B) Representation of each cell
by a Gaussian in the G-dimensional gene space. Diffusion paths (continuous paths with relatively high probability density) form on the data
manifold as a result of interference of the Gaussians. The Probability density function is shown in the heat map. C) The n ⇥ n Markovian
transition probability matrix. D) Data embedding on the first two eigenvectors of the Markovian transition matrix (DC1 and DC2) which
correspond to the largest diffusion coefficients of the data manifold. The embedding shows the continuous flow of cells across four cell types,
however it does not suggest the putative time direction.

is usually a detection limit at which lower expression levels and
non-expressed genes are all reported at the same value. Buettner
et al. (2014) suggested the use of a censoring noise model for PCA,
whereas for the other methods it is unclear how these uncertain or
missing values are to be treated. A variety of other manifold learning
methods including (Hessian) Locally-Linear Embedding (HLLE)
(Donoho and Grimes, 2003) and Isomap (Tenenbaum et al., 2000)
exist in the machine learning community and are discussed in detail
in the discussion and conclusion section.

Here, we propose diffusion maps (Coifman et al., 2005) as a
tool for analysing single-cell differentiation data. Diffusion maps
use a distance metric (usually referred to as diffusion distance)
conceptually relevant to how differentiation data is generated
biologically, as cells follow noisy diffusion-like dynamics in the
course of taking several differentiation lineage paths. Diffusion
maps preserve the nonlinear structure of data as a continuum
and are robust to noise. Furthermore, with density normalisation,
diffusion maps are resistant to sampling density heterogeneities and
can capture rare as well as abundant populations. As a nonlinear
dimension-reduction tool, diffusion maps can be applied on single-
cell omics data to perform dimension-reduction and ordering of
cells along the differentiation path in a single step, thus providing
insight to the dynamics of differentiation (or any other concept with
continuous dynamics). In this article, we

• propose an adaptation of diffusion maps for the analysis of
single-cell data which is less affected by sampling density
heterogeneities and addresses the issues relating to missing
values and uncertainties of measurement,

• propose a criterion for selecting the scale parameter in a
diffusion map,

• evaluate the performance of the diffusion map and its
robustness to noise and density heterogeneities using a toy
model that mimics the dynamics of differentiation,

• apply the adapted diffusion map algorithm to two typical
qPCR and one RNA-Seq data sets and show that it captures
the differentiation dynamics more accurately than other
algorithms.

2 METHODS
2.1 Diffusion maps
Let n be the number of cells and let G be the number of genes measured for
each cell. Denote the set of all measured cells by ⌦. We allow each cell x to
diffuse around its measured position x 2 RG through an isotropic Gaussian
wave function,
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Gaussian width �2 determines the length scale over which each cell can
randomly diffuse. The transition probability from cell x to cell y is then
defined by the interference of the two wave functions Yx and Yy . One can
easily show that this interference product is another Gaussian (all prefactors
cancel out):

1Z

�1

Yx(x
0)Yy(x

0)dx0 = exp

✓
�
||x� y||2

2�2

◆
(2)

Hence, we can construct the n⇥ n Markovian transition probability matrix
P for all pairs of cells in ⌦ as follows:

Pxy =
1

Z(x)
exp

✓
�
||x� y||2

2�2

◆
(3)

Z(x) =
X

y2⌦

exp

✓
�
||x� y||2

2�2

◆
(4)

At the position of each cell, Z(x) is the partition function which provides
an estimate of the number of neighbours of x in a certain volume defined
by �. Hence it can be interpreted as the density of cells at that proximity.
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Fig. 1: Schematic overview of diffusion maps embedding. A) The n⇥G matrix representation of single-cell data consisting of four different
cell types. The last column on the right side of the matrix (colour band) indicates the cell type for each cell. B) Representation of each cell
by a Gaussian in the G-dimensional gene space. Diffusion paths (continuous paths with relatively high probability density) form on the data
manifold as a result of interference of the Gaussians. The Probability density function is shown in the heat map. C) The n ⇥ n Markovian
transition probability matrix. D) Data embedding on the first two eigenvectors of the Markovian transition matrix (DC1 and DC2) which
correspond to the largest diffusion coefficients of the data manifold. The embedding shows the continuous flow of cells across four cell types,
however it does not suggest the putative time direction.

is usually a detection limit at which lower expression levels and
non-expressed genes are all reported at the same value. Buettner
et al. (2014) suggested the use of a censoring noise model for PCA,
whereas for the other methods it is unclear how these uncertain or
missing values are to be treated. A variety of other manifold learning
methods including (Hessian) Locally-Linear Embedding (HLLE)
(Donoho and Grimes, 2003) and Isomap (Tenenbaum et al., 2000)
exist in the machine learning community and are discussed in detail
in the discussion and conclusion section.

Here, we propose diffusion maps (Coifman et al., 2005) as a
tool for analysing single-cell differentiation data. Diffusion maps
use a distance metric (usually referred to as diffusion distance)
conceptually relevant to how differentiation data is generated
biologically, as cells follow noisy diffusion-like dynamics in the
course of taking several differentiation lineage paths. Diffusion
maps preserve the nonlinear structure of data as a continuum
and are robust to noise. Furthermore, with density normalisation,
diffusion maps are resistant to sampling density heterogeneities and
can capture rare as well as abundant populations. As a nonlinear
dimension-reduction tool, diffusion maps can be applied on single-
cell omics data to perform dimension-reduction and ordering of
cells along the differentiation path in a single step, thus providing
insight to the dynamics of differentiation (or any other concept with
continuous dynamics). In this article, we

• propose an adaptation of diffusion maps for the analysis of
single-cell data which is less affected by sampling density
heterogeneities and addresses the issues relating to missing
values and uncertainties of measurement,

• propose a criterion for selecting the scale parameter in a
diffusion map,

• evaluate the performance of the diffusion map and its
robustness to noise and density heterogeneities using a toy
model that mimics the dynamics of differentiation,

• apply the adapted diffusion map algorithm to two typical
qPCR and one RNA-Seq data sets and show that it captures
the differentiation dynamics more accurately than other
algorithms.

2 METHODS
2.1 Diffusion maps
Let n be the number of cells and let G be the number of genes measured for
each cell. Denote the set of all measured cells by ⌦. We allow each cell x to
diffuse around its measured position x 2 RG through an isotropic Gaussian
wave function,
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easily show that this interference product is another Gaussian (all prefactors
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an estimate of the number of neighbours of x in a certain volume defined
by �. Hence it can be interpreted as the density of cells at that proximity.
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pseudotemporal ordering → 
order cells according to similarity 

diffusion pseudotime

state

diffusion map and DPT implementation: 
destiny R-package 

library(destiny)
dm <- DiffusionMap(data, ...)
plot(dm, col.by = 'variable')

www.helmholtz-muenchen.de/icb/destiny

http://www.helmholtz-muenchen.de/icb/destiny
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challenges associated with studying the single-cell epigenome, and 
open problems associated with the increasing scale of single-cell 
experiments, the integration of diverse single-cell assays, and the use 
of these data to illuminate the organization of complex tissues.

Addressing technical variation in single-cell RNA-seq
We distinguish three sources of variation in scRNA-seq (Fig. 2, top). 
The first is technical variation, which is due to factors such as differences 
in cell integrity and lysis, RNA capture and cDNA conversion, and 
detection38,39. The second is allele-intrinsic variation, namely stochastic 
factors intrinsic to the molecular mechanisms that control gene 
expression40–42. For example, the bursting statistics of transcriptional 
initiation coupled to variable rates of mRNA degradation can lead to 
fluctuations in transcript levels over time in one cell, and to differences 
between otherwise ‘identical’ cells measured at a single time point. This 

Here we review key questions, progress, and open challenges in 
the development of computational methods in single-cell functional 
genomics, focusing primarily on scRNA-seq (we do not discuss 
single-cell genome analysis, as it was recently reviewed elsewhere37). 
We first distinguish key sources of variation in single cells, and 
experimental and computational strategies to tease them apart and 
to mitigate the effects of technical (unwanted) variation in order 
to explore the biological variation in the data. We highlight key 
current methods that can characterize the diverse factors involved 
in determining cellular identity, including cell type (with cell types 
forming a hierarchical taxonomy), continuous phenotypes, temporal 
progression (on linear, bifurcating, or cyclic trajectories), and spatial 
position in the tissue. We close with areas of substantial opportunity 
and challenges for future research, including emerging methods that 
harness single-cell data to dissect the molecular circuitry, unique 
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Figure 1  Diverse factors combine to create a cell’s unique identity, and computational methods reveal them. (a) A cell participates simultaneously in multiple 
biological contexts. The illustration depicts a particular cell (blue) as it experiences multiple contexts that shape its identity simultaneously (from left to 
right): environmental stimuli, such as nutrient availability or the binding of a signaling molecule to a receptor; a specific state on a developmental trajectory; 
the cell cycle; and a spatial context, which determines its physical environment (e.g., oxygen availability), cellular neighbors, and developmental cues 
(e.g., morphogen gradients). (b) The biological factors affecting the cell combine to create its unique, instantaneous identity, which is captured in the cell’s 
molecular profile. Computational methods dissect the molecular profile and tease apart facets of the cell’s identity, which are akin to ‘basis vectors’ that span 
a space of possible cellular identities. Key examples include (counterclockwise from top): (1) discrete cell types (e.g., cell populations in the retina (A.R. and 
colleagues30)); cell type frequency can vary by multiple orders of magnitude from the most abundant to the rarest subtype; (2) continuous phenotypes (e.g., 
the pro-inflammatory potential of each individual T cell, quantified through a gene expression signature derived from bulk pathogenic T cell profiles (N.Y., 
A.R. and colleagues1)); (3) unidirectional temporal progression (e.g., normal differentiation, such as hematopoiesis); (4) temporal vacillation between cellular 
states (e.g., oscillation through cell cycle; data taken from A.R. and colleagues102); (5) physical location (e.g., a cell’s location during embryo development 
determines its exposure to morphogen gradients. Dividing an organ into discrete spatial bins, combined with independent data on landmark genes, allows 
inference of spatial bins (highlighted) from which single cells had likely originated (figure adapted from A.R. and colleagues95). The scatterplots represent 
single cells (dots) projected onto two dimensions (e.g., first two principal components or using t-SNE).

REV IEW

Discrete & continuous topologies

pseudotemporal 
ordering

Trapnell et al., Bendall et al. (2014), Haghverdi et al. (2016) …

clustering
Levine et al., Cell (2015), Xu et al. Bioinf (2015) …

tree fitting

Qiu et al., Nat Meth (2017), Grün et al. 
Nature (2015) & Cell Stem Cell (2016),  
Rizvi et al., Nat Biotechn (2017)…

cycle fitting

Leng et al., Nat Meth (2015) 
Eulenberg et al, Nat Com (2017)

pseudospace & 
spatial mapping

Scialdone et al., Nature (2016), 
Satija et al. Nat Biotech (2015) …

line topology

tree topology circle topology

complex topology

discrete topology
goal: unify this!

‘single-cell graph’ represents 
topology at single-cell resolution

Wolf et al, bioarxiv 208819 

graph

abstraction

A

B



Inferring the lineage tree of planaria 

46 cell types, 
all continuously related

collab Rajewski lab  
Plass & Solana et al, Science 2018
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A periodic table of our cells
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Big data skill gap & education

~2014

9 Data Masters @ TUM | Professor Massimo Fornasier (MA) | Professor Thomas Neumann (IN) 

One Integrative Study Program Two Masters 

For students with a 
background in 
mathematics who seek for 
mathematical methods and 
interdisciplinary training to 
face contemporary 
challenges related to ‘Big 
Data’ 

MSc 
Mathematics in 
Data Science 

For students with a 
background in computer 
science who seek state-of-
the-art methods and 
techniques to face 
contemporary challenges 
related to ‘Big Data’ 

MSc Data 
Engineering & 
Analytics 

Data scientist … ‘sexiest job of the 21st Century’.

Harvard Business Review



Conclusion

summary 

»preprocessing: deep count autoencoder denoising 

»diffusion pseudotime: understand temporal 
structure of differentiation processes 

»graph abstraction: robust multi-branch analysis 

»applications to hematopoiesis and epithelial gut 

outlook 

»challenges of large-scale scRNAseq 

»human cell atlas as single-cell resolved 
background map for complex diseases 

»data scientist education

 

Figure 1. DCA denoises scRNA-seq data by learning the data manifold using an autoencoder              

framework. Panel A depicts a schematic of the denoising process adapted from Goodfellow et al. 26 . Red                

arrows illustrate how a corruption process, i.e. measurement noise from dropout events, moves data              

points away from the data manifold (black line). The autoencoder is trained to denoise the data by                  

mapping corrupted data points back onto the data manifold (green arrows). Filled blue dots represent                

corrupted data points. Empty blue points represent the data points without noise. Panel B shows the                

autoencoder with a ZINB loss function. Input is the original count matrix (pink rectangle; gene by cells                 

matrix, with dark blue indicating zero counts) and the mean matrix of the negative binomial component                

represents the denoised output (blue rectangle). Input counts, mean, dispersion and dropout probabilities             

are denoted as x, μ, θ and π.  respectively.  

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/300681doi: bioRxiv preprint first posted online Apr. 13, 2018; 



Institute of  
Computational  

Biology

@fabian_theis

www.comp.bio       

http://comp.bio

