Applications of deep learning in computational pathology

Geert Litjens Assistant professor Department of Pathology Radboud University Nijmegen Medical Center, The Netherlands

The business case for digital pathology?

5 Key criteria for evaluating Digital Pathology

The adoption of digital pathology is evolving and offers functionality that goes far beyond the microaccept. These new opportunities significantly increase workflow efficiency. They move brene-consuming tasks to the computer and allow the pathologist to spend more time on reviewing cases. Here are five key criterie when evaluation a solution for digital pathology.

Optimized workflow

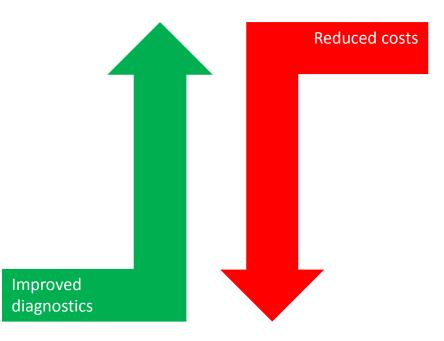
The business case for digital pathology?

Scanners

Storage

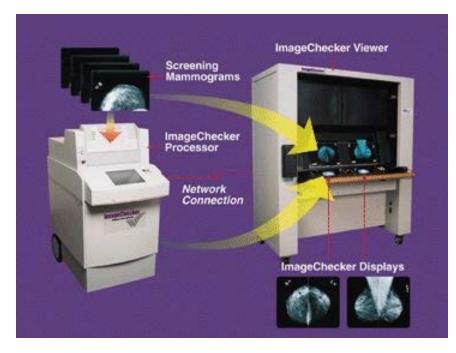
Computers

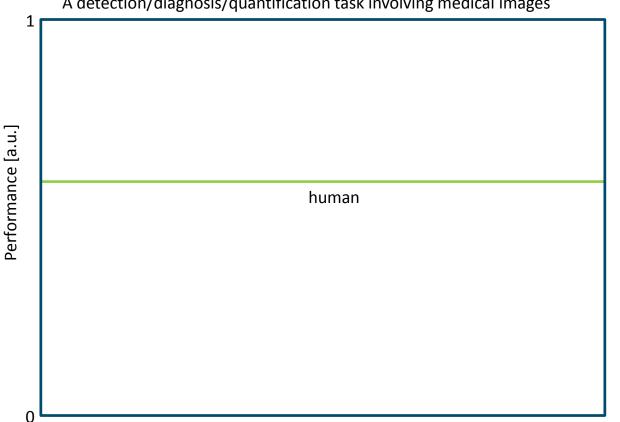
The business case for digital pathology?



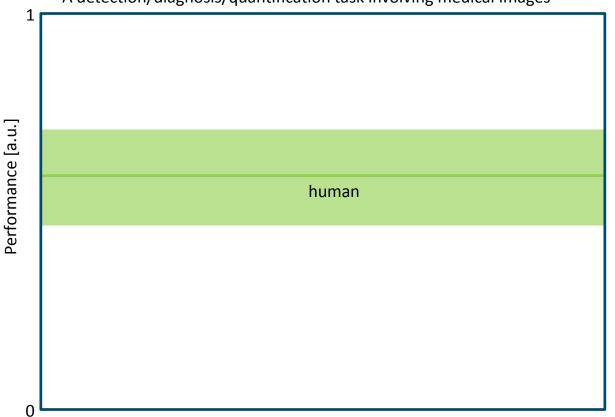
Computer Aided Diagnosis

The promise of computerized analysis?

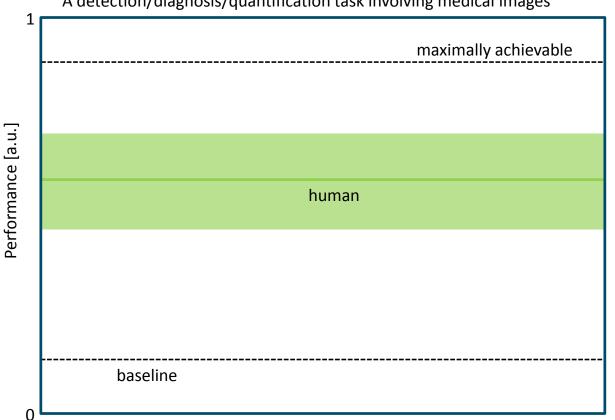




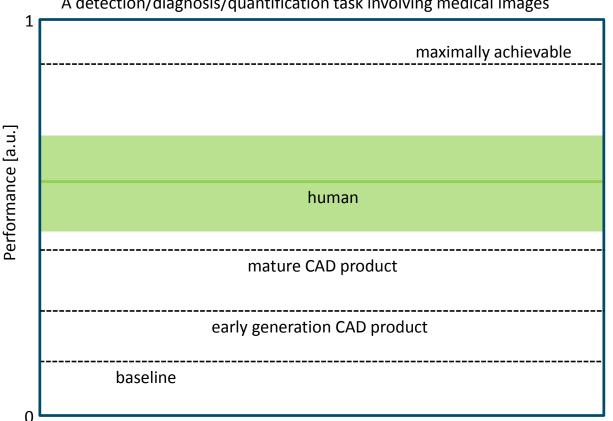
A detection/diagnosis/quantification task involving medical images



A detection/diagnosis/quantification task involving medical images

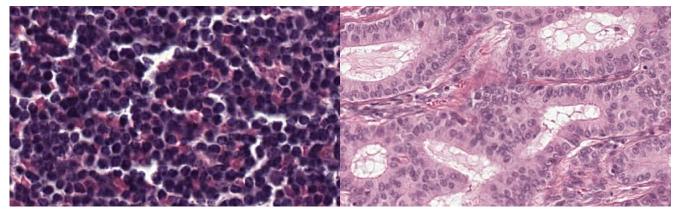


A detection/diagnosis/quantification task involving medical images



A detection/diagnosis/quantification task involving medical images

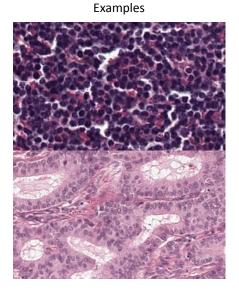
How to build a traditional CAD system?

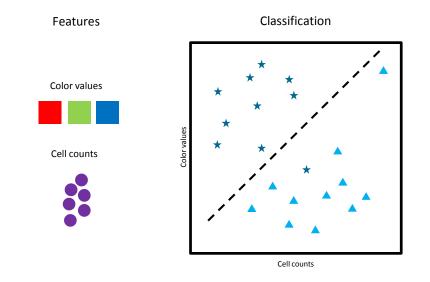


Normal lymph node tissue

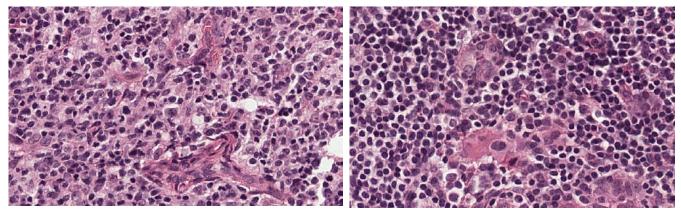
Breast cancer metastasis

How to build a traditional CAD system?



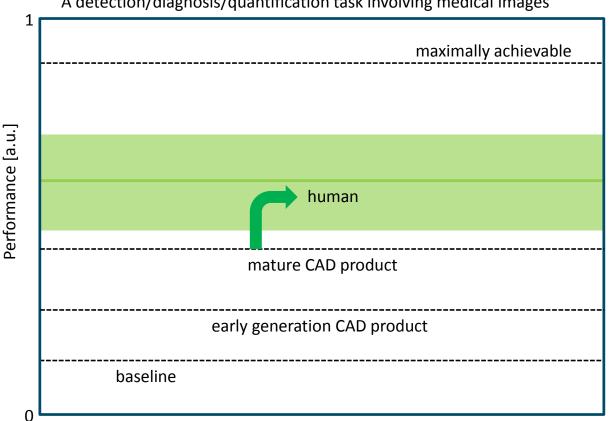


How to build a traditional CAD system?

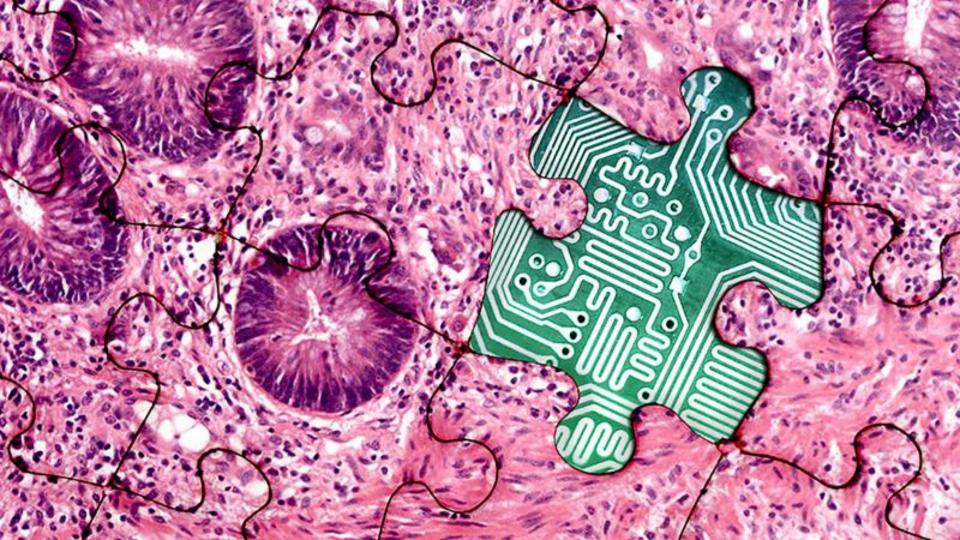


Normal lymph node tissue

Breast cancer metastasis



A detection/diagnosis/quantification task involving medical images



THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

At last – a computer program that can beat a champion Go player PAGE 484

ALL SYSTEMS GO

CONSERVATION

SONGBIRDS A LA CARTE Illegal harvest of millions of Mediterranean birds ME 452 SAFEGUARD TRANSPARENCY Don't let openness hackfire on individuals MGE 459

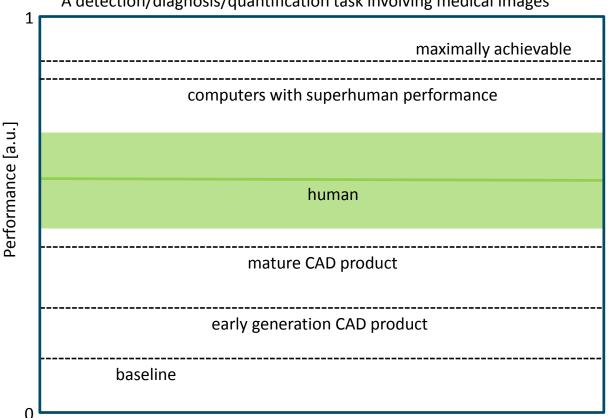
RESEARCH ETHICS

WHEN GENES GOT 'SELFISH' Dawkins's calling card forty years on Phat 42

PDPULAR SCIENCE

26 Jenuary 2018 - £10 Vol. 529, No. 7587

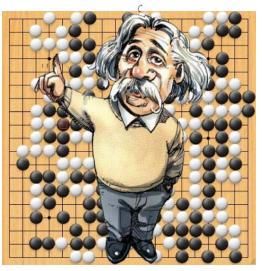
⇒ NATURE.COM/NATURE



A detection/diagnosis/quantification task involving medical images

Deep learning

30 options per turn 40 turns per game



250 options per turn 150 turns per game

JAGON TANZ IDEAS 05.17.16 06:50 AM

SOON WE WON'T PROGRAM COMPUTERS. WE'LL TRAIN THEM LIKE DOGS

🕒 EDWARD C. MONAGHAN

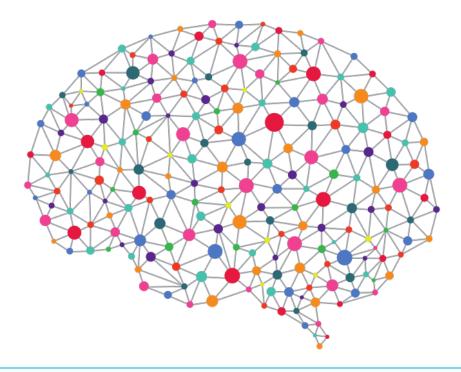
BEFORE THE INVENTION of the computer, most experimental psychologists thought the brain was an unknowable black box. You could analyze a subject's behavior—*ring bell, dog salivates*—but thoughts, memories, emotions? That stuff was obscure and inscrutable, beyond the reach of science. So these behaviorists, as they called themselves, confined their work to the study of stimulus and response, feedback and reinforcement balls and saliva. They gave up trains to

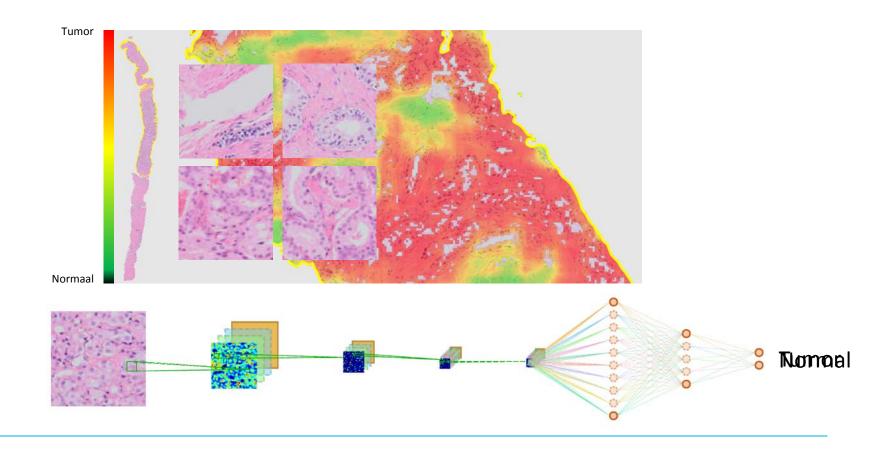
MOST POPULAR

TRANSPORTATION

SOON WE WON'T PROGRAM COMPUTERS. WE'LL TRAIN THEM LIKE DOGS

How to build CAD systems at (super-)human level?





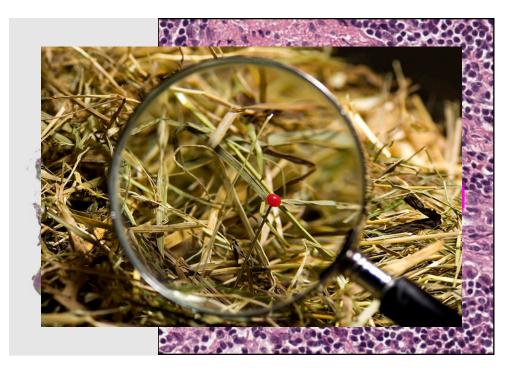
Radboudumc

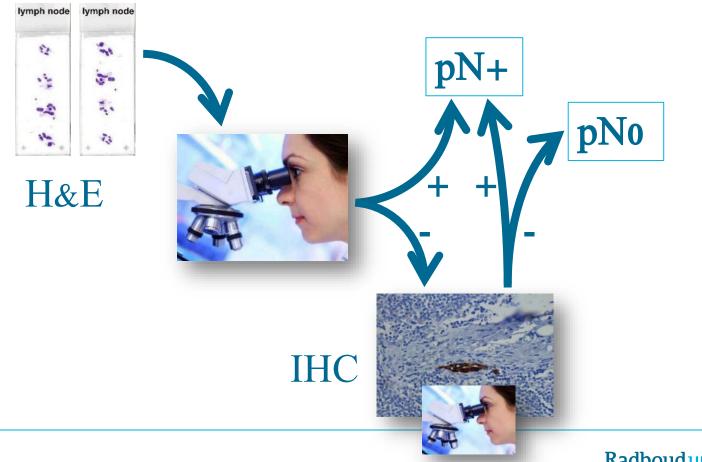
Litjens et al. Sci Rep. 2016

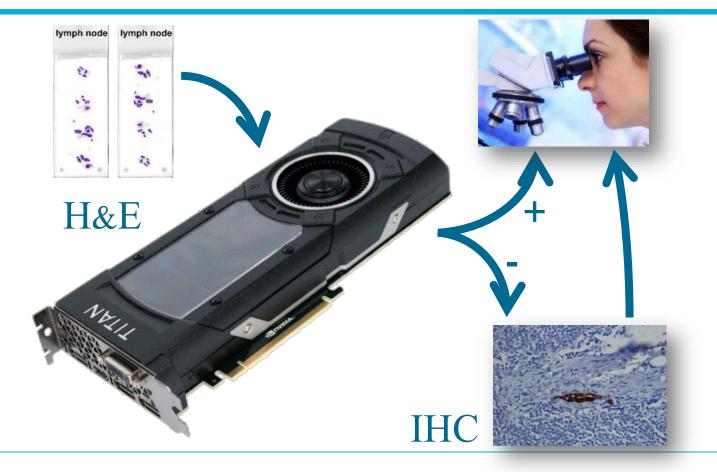
Applications of computational pathology

Clinical applications					
	Detection of metastases in lymph nodes	Automated counting of mitoses			
	Quantification of multiplexed immunohistochemistry	Quantification of tumor- associated stroma			
Biomarker research					

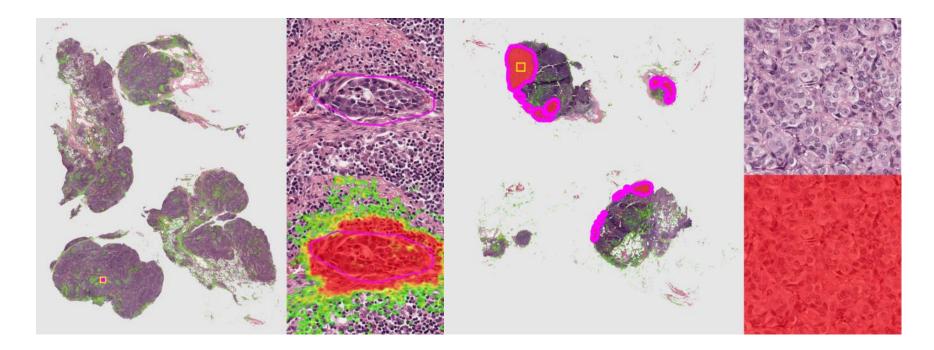
Detection of metastases in lymph nodes







Detection of metastases in lymph nodes

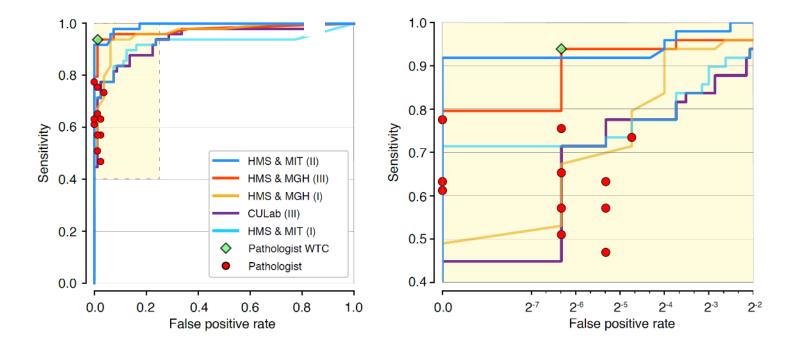


Data

Center	Number of slides	
CWZ (Nijmegen)	200	
LabPON (Hengelo)	200	
Rijnstate (Arnhem)	200	
Radboudumc (Nijmegen)	439	
UMCU (Utrecht)	350	
Total	1399	

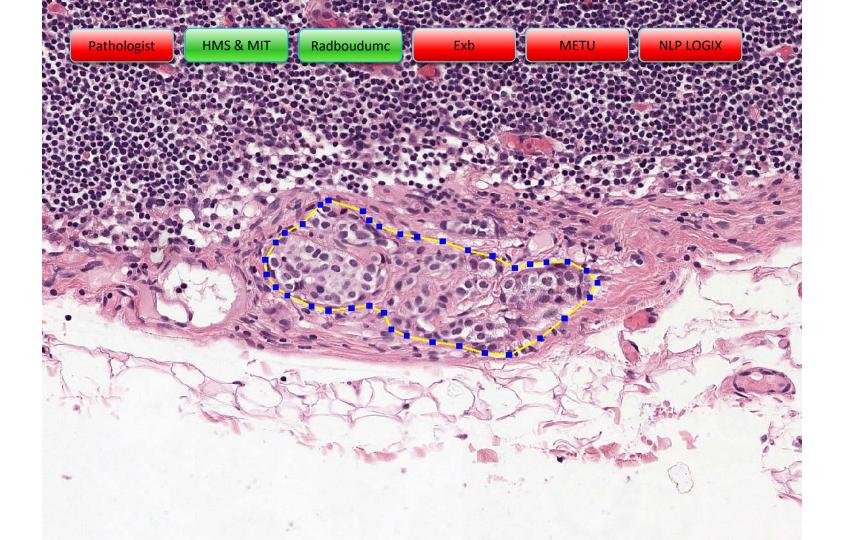
Rank 🔺	Team 🗘	AUC 💠	Description 💸
01	Harvard Medical School (BIDMC) and Massachusetts Institute of Technology (CSAIL), USA	0.9250	🔁 📄 😰
02	ExB Research and Development co., Germany	0.9173	🔁 📄 😰
03	Independent participant, Germany	0.8680	🔁 📄 😰
04	Health Sciences Middle East Technical University, Turkey	0.8669	🔁 📄 😰
05	NLP LOGIX co., USA	0.8332	🔁 📄 😰
06	University of Toronto, Electrical and Computer Engineering, Canada	0.8181	🔁 📄 😰
07	The Warwick-QU Team, United Kingdom	0.7999	🔁 📄 😰
08	Radboud University Medical Center, Diagnostic Image Analysis Group, Netherlands	0.7828	🔁 📄 😰
09	HTW-BERLIN, Germany	0.7717	
10	University of Toronto, Electrical and Computer Engineering, Canada	0.7666	🔁 📄 😰

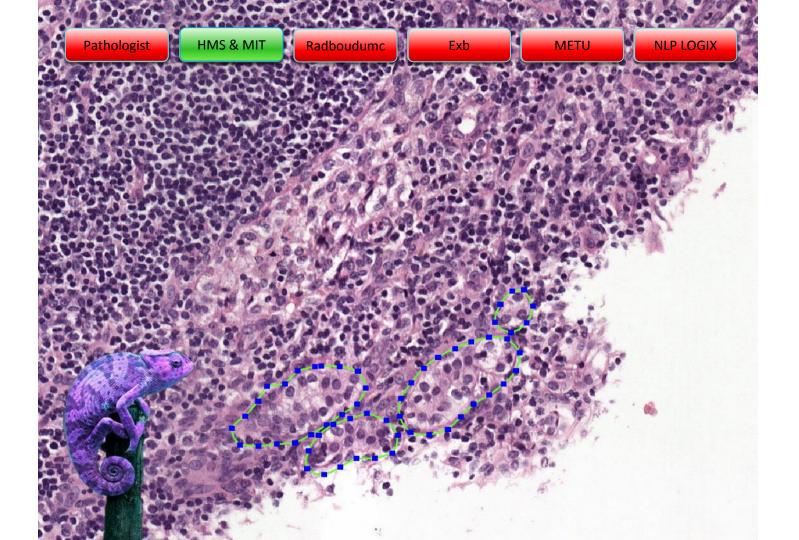
Comparison to human experts

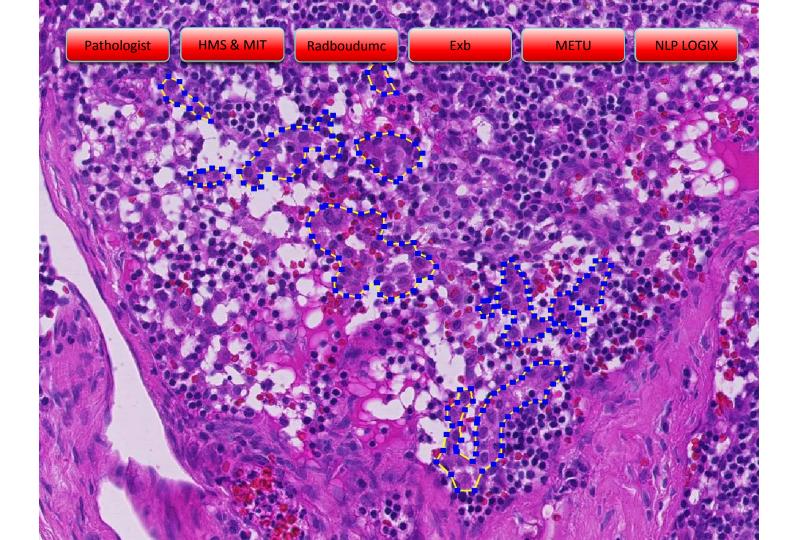


Radboudumc

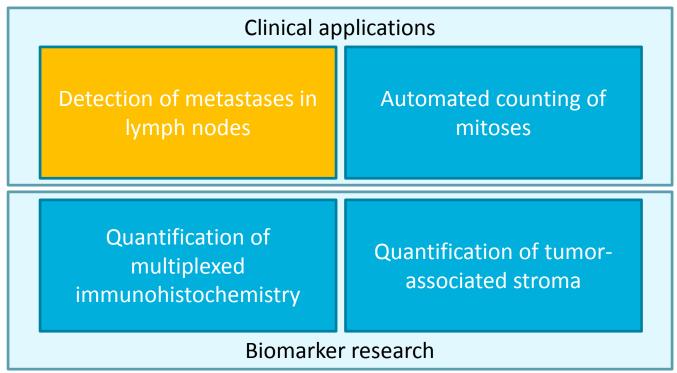
Ehteshami et al. JAMA. 2017



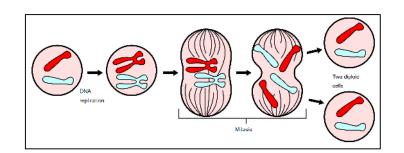


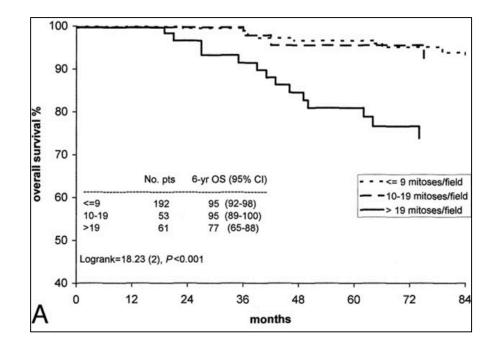


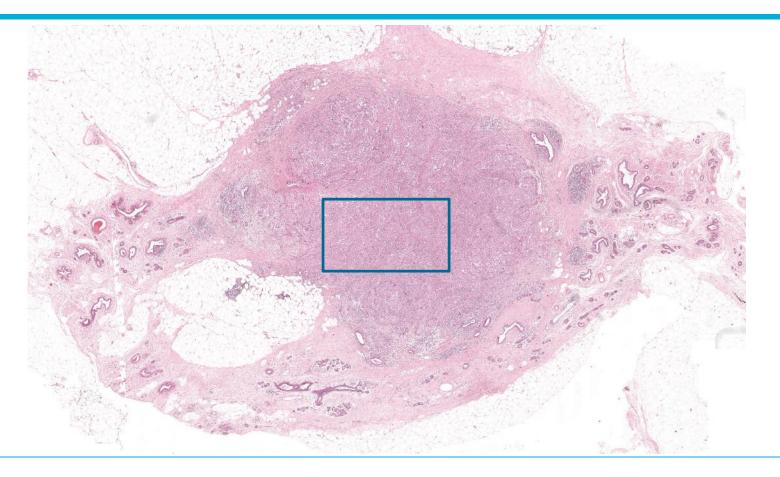
Applications of computational pathology

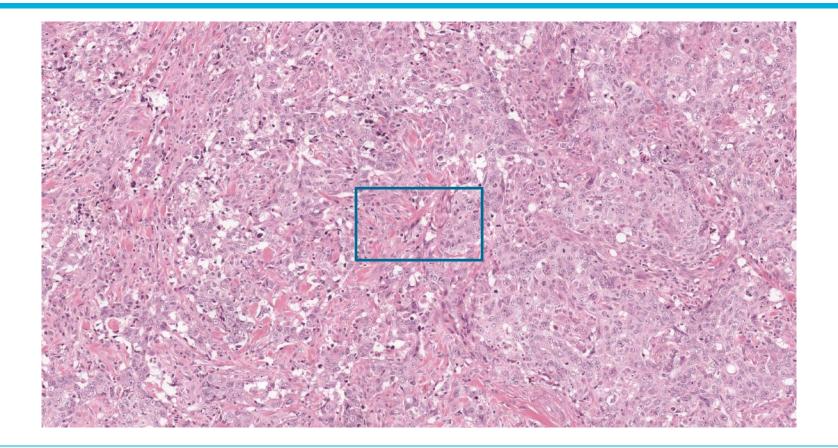


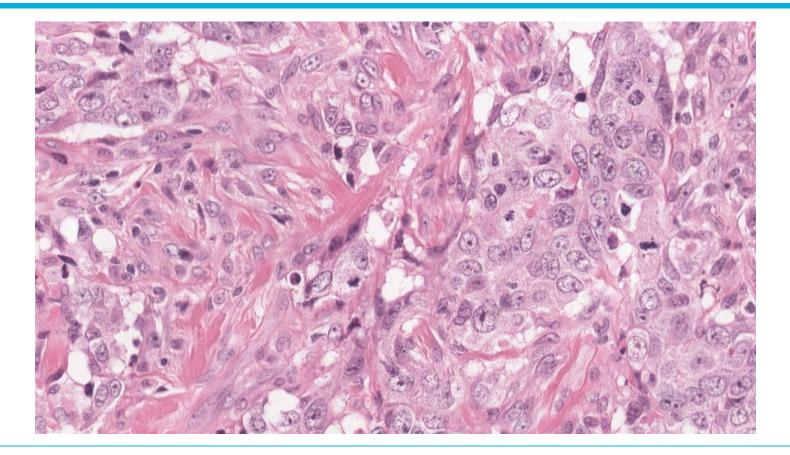
Automated counting of mitoses









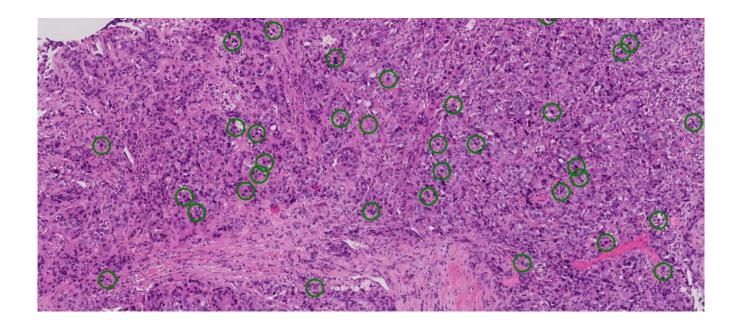


Automated counting of mitoses

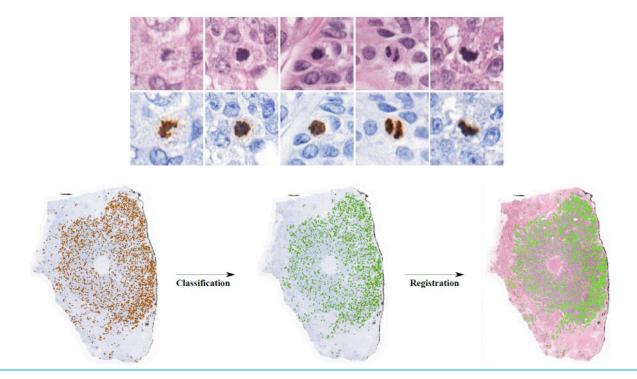
	D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, "Mitosis detection in breast cancer histology images with deep neural networks," in <i>International Conference on Medical Image Computing</i> <i>and Computer-assisted Intervention.</i> Springer, 2013, pp. 411–418.
Assessment of Mitosis Detection Algorithms 2013	M. Veta, P. J. van Diest, M. Jiwa, S. Al-Janabi, and J. P. Pluim,
	"Mitosis counting in breast cancer: Object-level interobserver agreement and comparison to an automatic method," <i>PloS one</i> , vol. 11, no. 8, p.
	e0161286, 2016.
	E. Zerhouni, D. Lányi, M. Viana, and M. Gabrani, "Wide residual networks for mitosis detection," in <i>Biomedical Imaging (ISBI 2017)</i> ,
Tumor Proliferation Assessment Challenge 2016	2017 IEEE 14th International Symposium on. IEEE, 2017, pp. 924–928.
	K. Paeng, S. Hwang, S. Park, M. Kim, and S. Kim, "A unified framework for tumor proliferation score prediction in breast histopathology," <i>arXiv</i>

preprint arXiv:1612.07180, 2016.

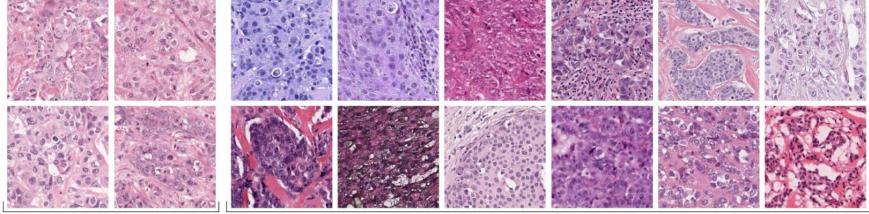
Problem 1: reference standard



Solution: PHH3 IHC



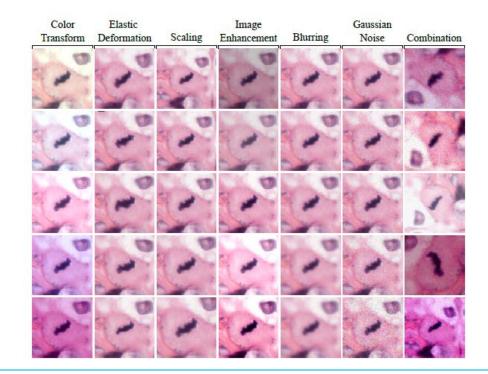
Problem 2: staining variation

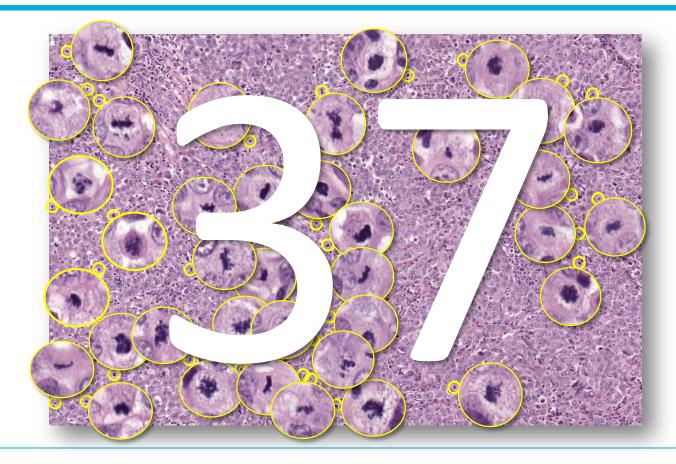


TNBC dataset

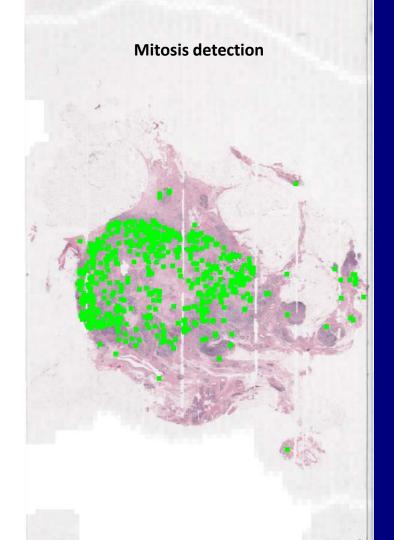
TUPAC dataset

Solution 2: Data augmentation

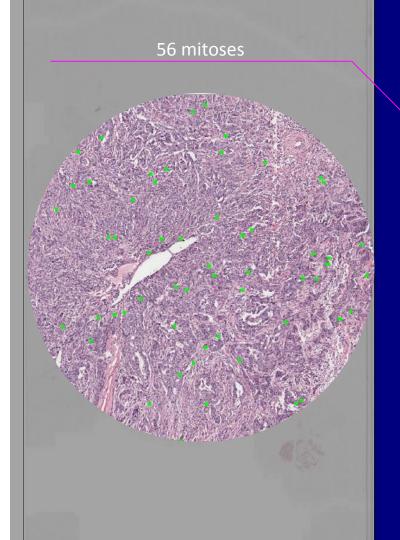




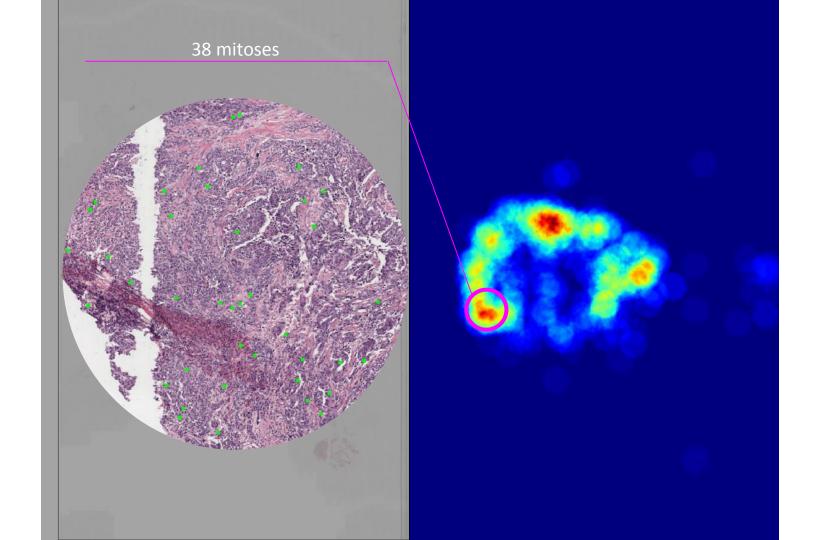
Tellez et al. IEEE Transactions on Medical Imaging. Accepted



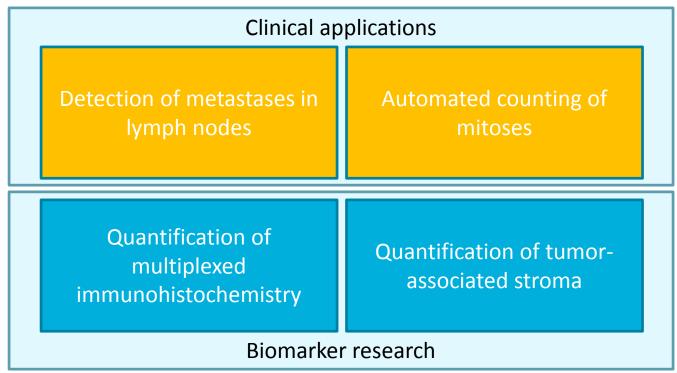
Mitosis density



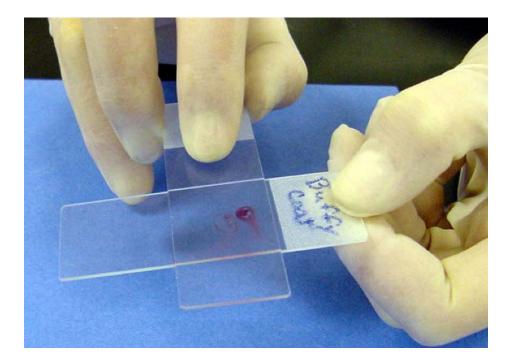
Immediate visibility via hot-spots



Applications of computational pathology



Multiplexing in routine...



Current multiplexing strategies in research...

- A novel immunohistochemical sequential multi-labelling and erasing technique enables epitope characterization of bone marrow pericytes in primary myelofibrosis. Madelung et al. *Histopathology*. 2012
- Prediction of survival in diffuse large B-cell lymphoma based on the expression of genes reflecting tumor and micro-environment. Alizadeh et al. *Blood, 2011*
- Distribution Patterns of Dendritic Cells and T Cells in Diffuse Large B-Cell Lymphomas Correlate with Prognoses. Chang et al. *Clin Canc Res*, 2007
- Many others...

Current literature focusses on ideal situations

Idealized setting

- Consecutive sections
- Similar stains
- No major tissue artifacts
- Rough alignment present

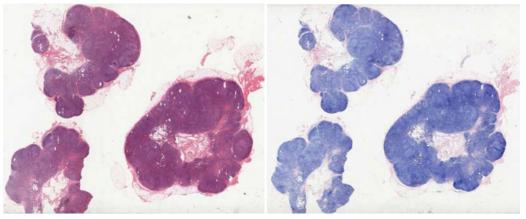


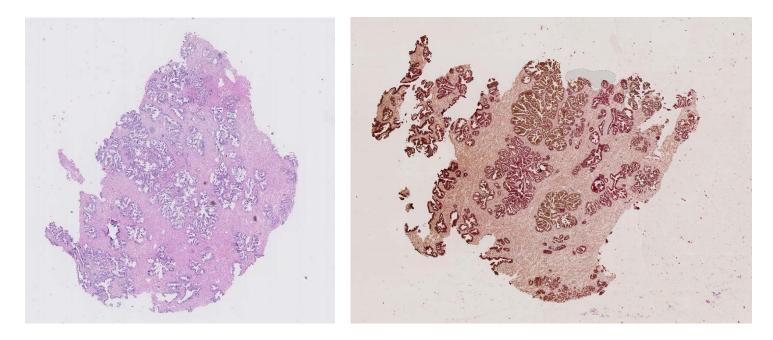
Image from Mueller et al. Computerized Medical Imaging and Graphics. 2011

Deviations from idealized setting have huge impact

 Median Hausdorf distance between landmark points triples (25 microns to 75 microns)¹

¹Song et al. IEEE Transactions on Biomedical Engineering. 2014

Most studies don't have ideal data

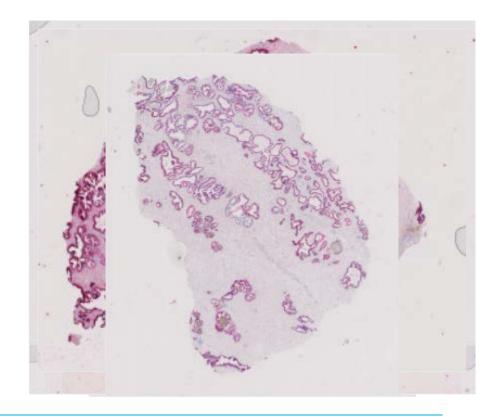


Litjens et al. SPIE Medical Imaging. 2016

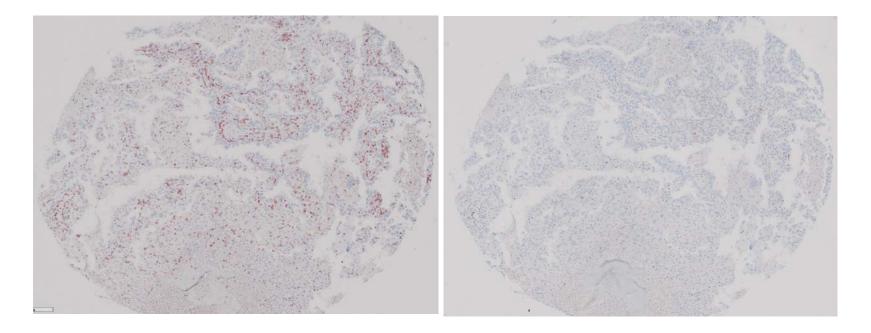
'Real' data

Clinical trial for immunotherapy

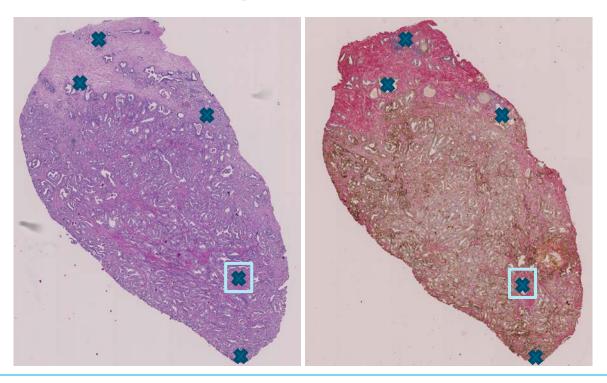
- 31 stains per section
- 0.48 microns per pixel



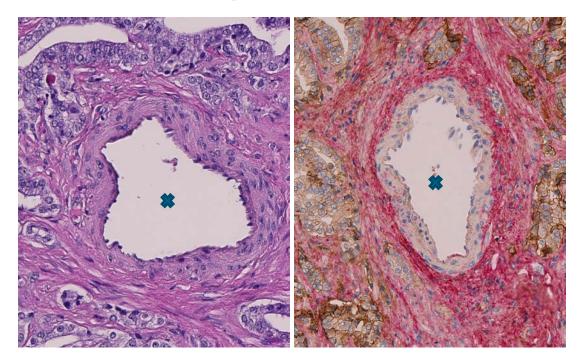
'Ideal' data



Experimental design

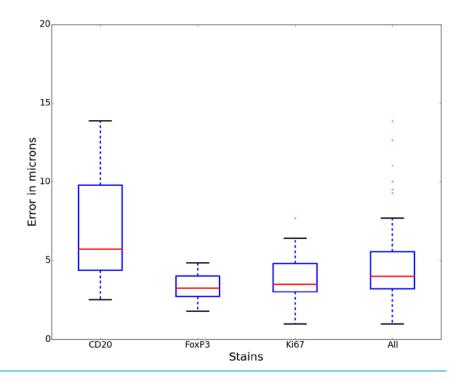


Experimental design

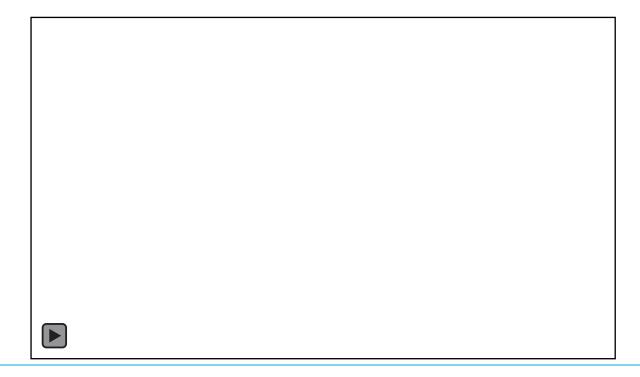


Quantitative results – 'Ideal' data

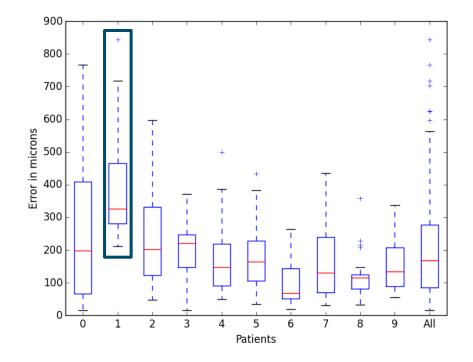
- Median registration error across all stains is 4 micron
- Maximum registration error is 14 micron



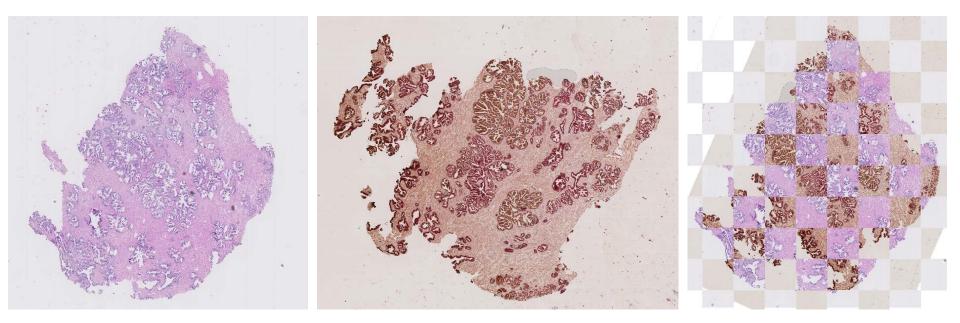
Qualitative results

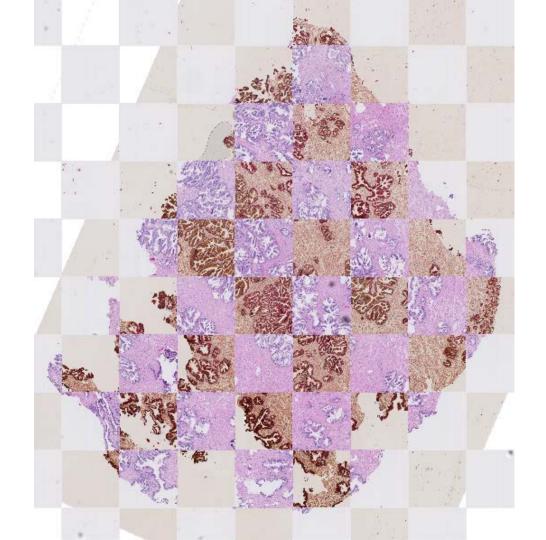


Quantitative results – 'Real' data

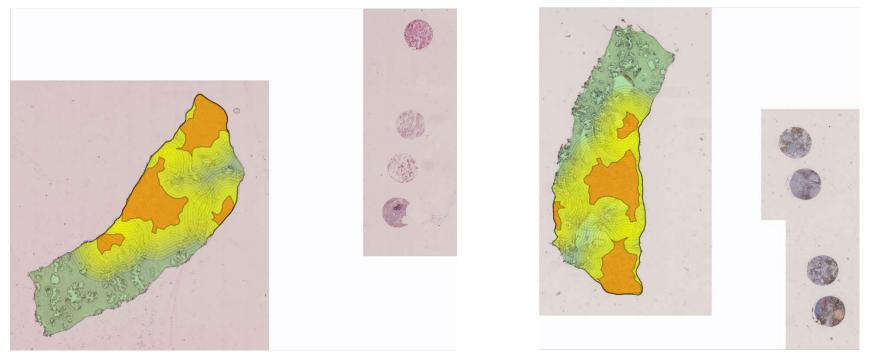


Qualitative results: Patient 1

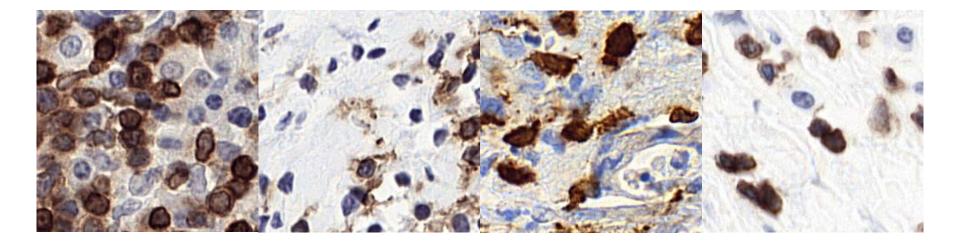




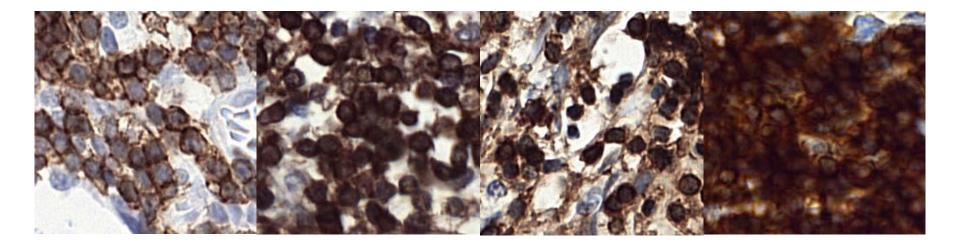
Qualitative results



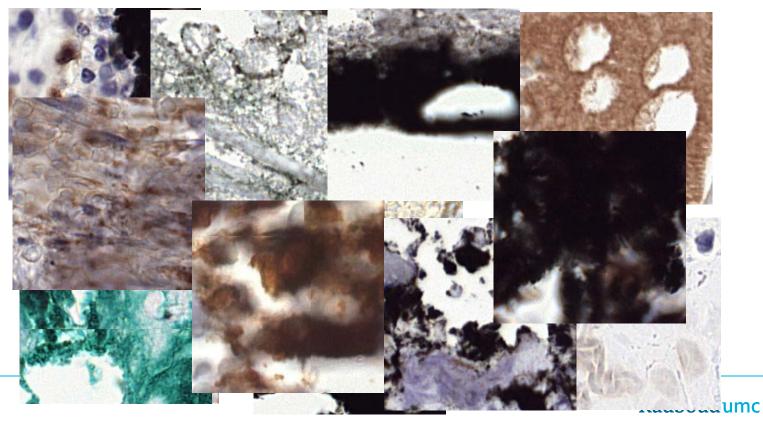
Quantification of IHC

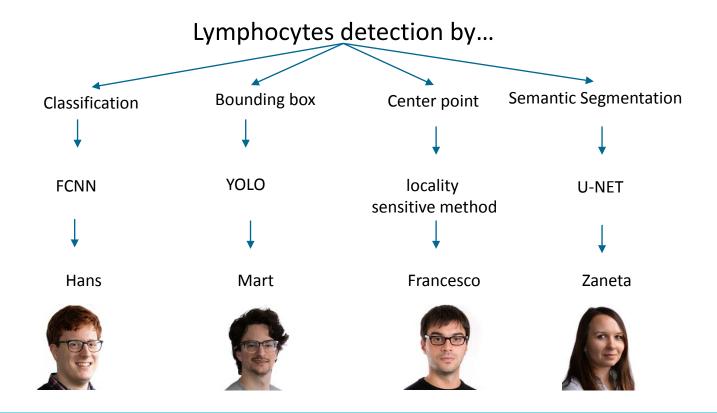


Quantification of IHC

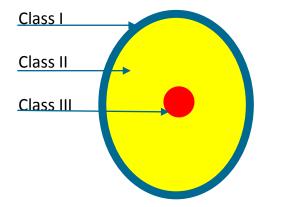


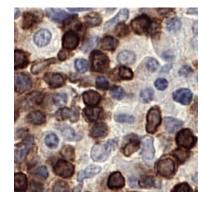
Quantification of IHC

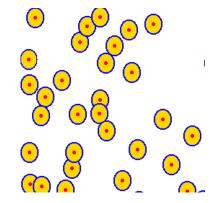




Approach II -multi-class mask

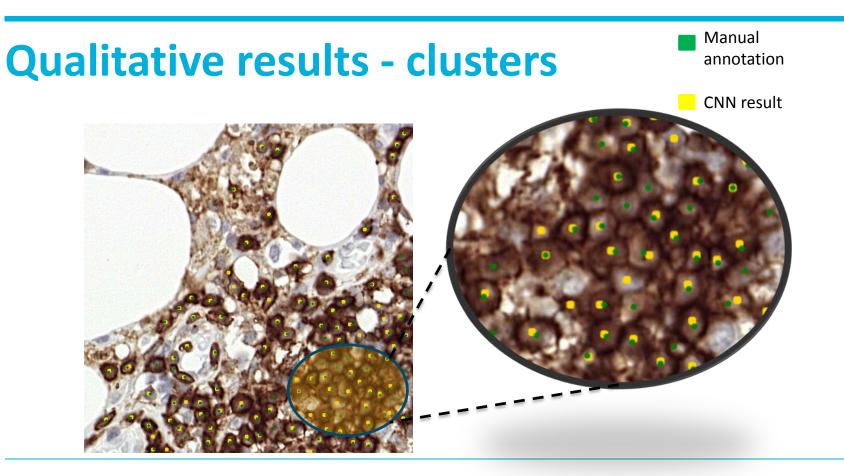




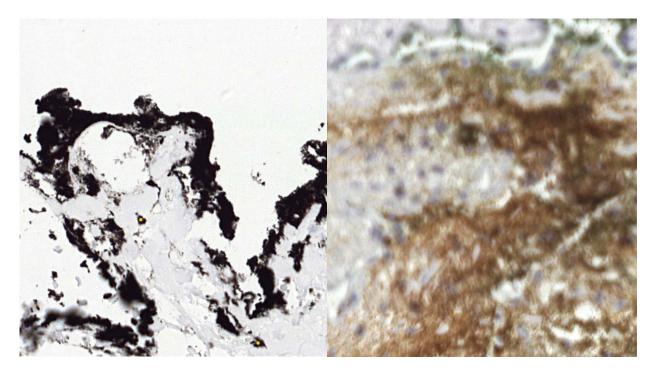


Quantitative results

			Test set	
Area type	Method	F1-score	Precision	Recall
	FCNN	0.721	0.753	0.810
	LSM	0.669	0.554	0.846
Regular tissue	YOLO	0.780	0.750	0.810
-	Unet	0.762	0.785	0.740
	Unet-E	0.778	0.756	0.781



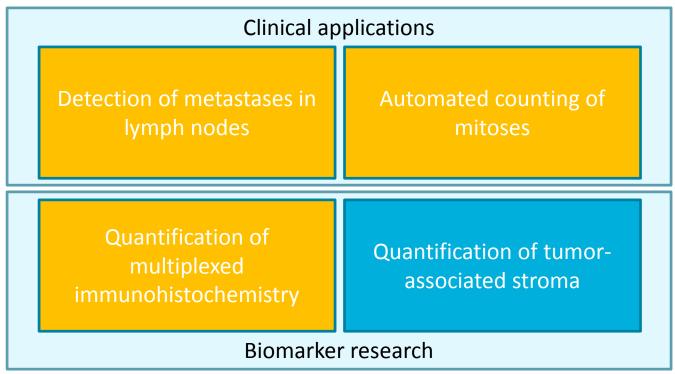
Qualitative results - artifacts



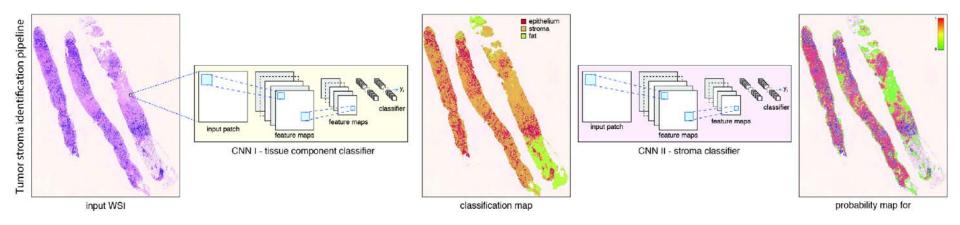
Radboudumc

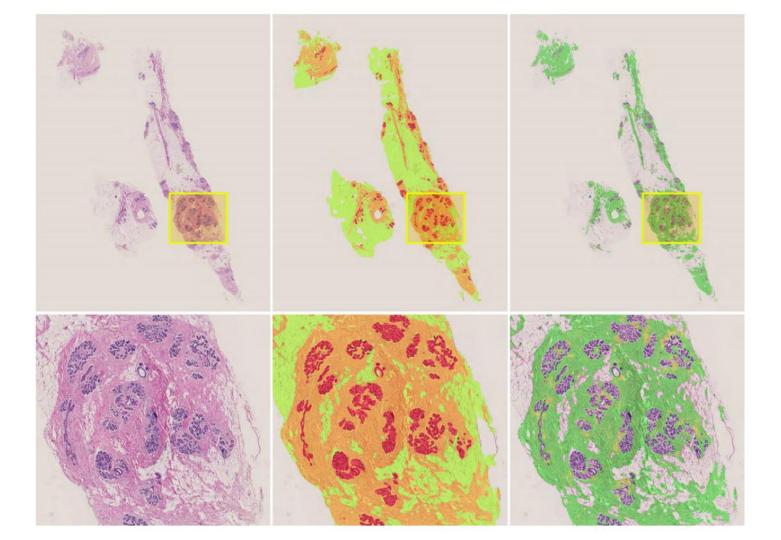
Swiderska et al. MIDL. Accepted

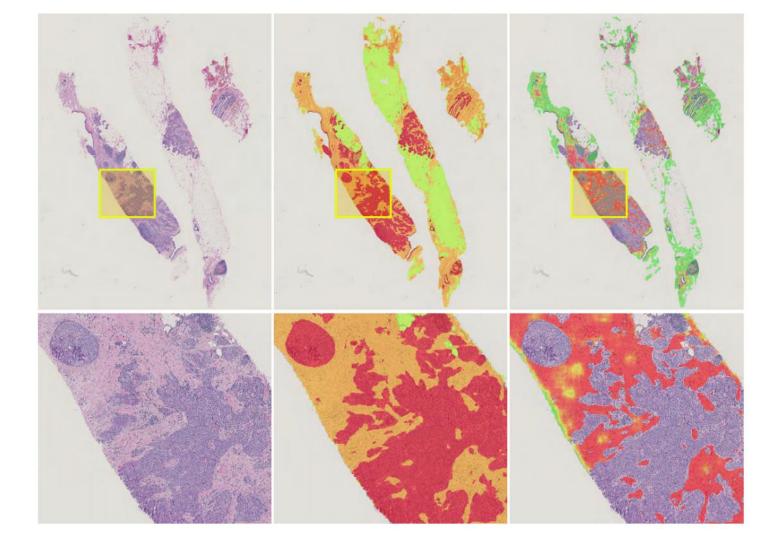
Applications of computational pathology



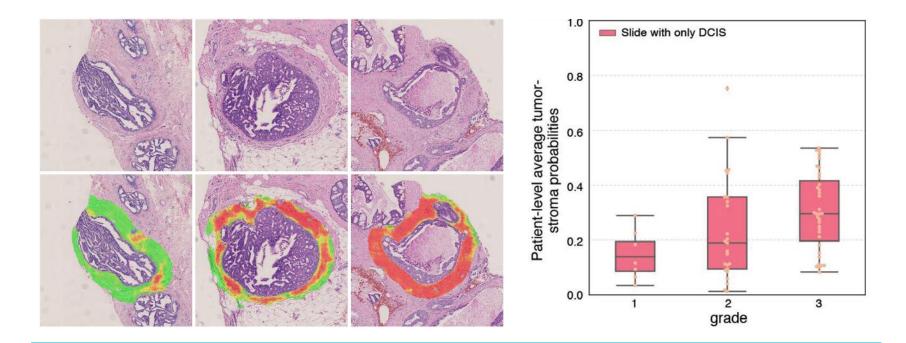
Tumor-associated stroma







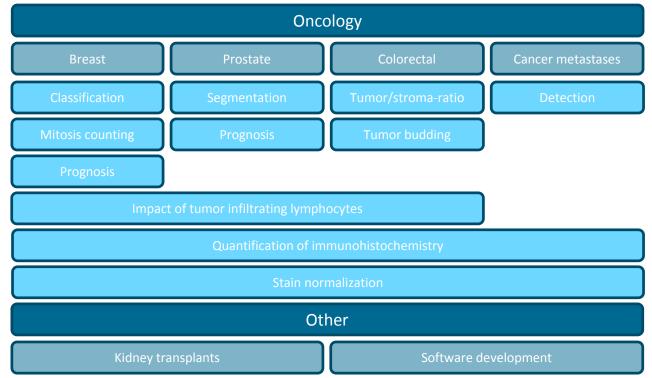
Tumor-associated stroma



Radboudumc

Ehteshami et al. Modern Pathology. Accepted

Other areas of research



Faculty

Jeroen van der Laak 🖾

Francesco Ciompi 🖂

Geert Litjens 🖾

Researchers

Maschenka Balkenhol 🖾

Thomas de Bel 🖾

Péter Bándi 🖾

John-Melle Bokhorst 🖾

Karel Gerbrands 🖾

Rob van de Loo 🖾

Wouter Bulten 🖾

Oscar Geessink 🖾

Meyke Hermsen 🔤

Hans Pinckaers 🖂

Zaneta Swiderska-Chadaj

David Tellez 🖂

Marjolijn den Boer 🖾

