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The business case for digital pathology?

Key criteria @ ormesd vt
for evaluating o
Digital Pathology o Q

Radboudumc



The business case for digital pathology?
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The business case for digital pathology?
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The promise of computerized analysis?
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A detection/diagnosis/quantification task involving medical images
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How to build a traditional CAD system?
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Examples

Features

Color values

Cell counts

Classification

How to build a traditional CAD system?
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How to build a traditional CAD system?
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Deep learning
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How to build CAD systems at (super-)human level?
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Detection of metastases in lymph nodes
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Detection of metastases in lymph nodes
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Data
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Harvard Medical School (BIDMC) and Massachusetts Institute of Technology (CSAIL), USA 0.9250 2@
02 ExB Research and Development co., Germany 0.9173 @ 20
03 Independent participant, Germany 0.8680 LI2g
04 Health Sciences Middle East Technical University, Turkey 0.8669 2@
05 NLP LOGIX co., USA 0.8332 L2g
06 University of Toronto, Electrical and Computer Engineering, Canada 0.8181 LJ2g
07 The Warwick-QU Team, United Kingdom 0.7999 L2g
08 Radboud University Medical Center, Diagnostic Image Analysis Group, Netherlands 0.7828 LI2g
09 HTW-BERLIN, Germany 0.7717 A2

10 University of Toronto, Electrical and Computer Engineering, Canada 0.7666 2@



Comparison to human experts

107 - —_— 107
] 0.91
0.8 - ;
l 0.81
> 0.6 : >
2 | s
'g | —— HMS & MIT (Il 2 0.71
@ 044 m— HMS & MGH (111) w
HMS & MGH (1) 0.6
= CULab (Ill)
0.2 1 HMS & MIT (1) -
. 0.51
¢  Pathologist WTC
@  Pathologist
0.0 - 0.4-
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0 27 2 2% 24 23 22
False positive rate

Ehteshami et al. JAMA. 2017
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Automated counting of mitoses
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Automated counting of mitoses

D. C. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber.
“Mitosis detection in breast cancer histology images with deep neural
networks,” in International Conference on Medical Image Computing

. and Computer-assisted Intervention.  Springer, 2013, pp. 411-418.

Assessment of Mitosis Detection Algorithms 2013
AMIDAL | MICCAT Grand Challenge M. Veta, P. J. van Diest. M. Jiwa, S. Al-Janabi, and J. P. Pluim,
“Mitosis counting in breast cancer: Object-level interobserver agreement
and comparison to an automatic method,” PloS one, vol. 11, no. 8, p.
e0161286, 2016.

E. Zerhouni, D. Lanyi, M. Viana, and M. Gabrani, “Wide residual
networks for mitosis detection,” in Biomedical Imaging (ISBI 2017),

2017 IEEE 14th International Sy i . IEEE, 2017, pp. 924—
Tumor Proliferation Assessment Challenge 2016 028 riternationat symposium on ’ P9
TUPACHS | MICGAT Grand Chaliemge .

K. Paeng. S. Hwang. S. Park. M. Kim. and S. Kim. “A unified framework
for tumor proliferation score prediction in breast histopathology,” arXiv
preprint arXiv:1612.07180, 2016.
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Problem 1: reference standard
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Solution: PHH3 IHC
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Problem 2: staining variation
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Solution 2: Data augmentation
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Tellez et al. IEEE Transactions on Medical Imaging. Accepted Radboudumc



Mitosis detection Mitosis density




Immediate visibility via hot-spots
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Multiplexing in routine...
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Current multiplexing strategies in research...

* A novel immunohistochemical sequential multi-labelling
and erasing technique enables epitope characterization of
bone marrow pericytes in primary myelofibrosis.
Madelung et al. Histopathology. 2012

* Prediction of survival in diffuse large B-cell ymphoma
based on the expression of genes reflecting tumor and
micro-environment. Alizadeh et al. Blood, 2011

* Distribution Patterns of Dendritic Cells and T Cells in
Diffuse Large B-Cell Lymphomas Correlate with Prognoses.
Chang et al. Clin Canc Res, 2007

e Many others...
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Current literature focusses on ideal situations

Idealized setting
* Consecutive sections
e Similar stains
* No major tissue artifacts
* Rough alignment present

Image from Mueller et al. Computerized Medical Imaging and Graphics. 2011

Deviations from idealized setting have huge impact

 Median Hausdorf distance between landmark points triples (25 microns to
75 microns)?

1Song et al. IEEE Transactions on Biomedical Engineering. 2014 Radboudumc



Most studies don’t have ideal data

Litjens et al. SPIE Medical Imaging. 2016 Radboudumc



‘Real’ data

Clinical trial for immunotherapy
e 31 stains per section
* 0.48 microns per pixel
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‘Ideal’ data
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Experimental design
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Experimental design
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Quantitative results — ‘Ideal’ data

20

 Median registration error across
all stains is 4 micron

* Maximum registration error is 15
14 micron
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Qualitative results
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Quantitative results — ‘Real’ data
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Qualitative results: Patient 1
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Qualitative results
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Quantification of IHC
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Quantification of IHC
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Quantlflcatlon of IHC
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Lymphocytes detection by...

Classification Bounding box Center point ~ Semantic Segmentation
FCNN YOLO locality U-NET

sensitive method
| } | }

Hans Mart Francesco Zaneta

? Hl(

Radboudumc



Approach Il -multi-class mask
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Quantitative results

Test set
Area type Method Fl-score Precision Recall
FCNN  0.721 0.753 0.810
LSM 0.669 0.554 0.846
Regular tissue YOLO 0.780 0.750 0.810
Unet 0.762 0.785 0.740
Unet-E  0.778 0.756 0.781
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Manual

Qualitative results - clusters

CNN result
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Qualitative results - artifacts

Swiderska et al. MIDL. Accepted Radboudumc
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Tumor stroma identification pipeline

Tumor-associated stroma

input pach

fearure maps

input WSI

CNN | - tissue companent classifier
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feature maps

classification map

CNN II - stroma classifier

probability map for
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Tumor-associated stroma
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Other areas of research

Oncology

Other
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