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The business case for digital pathology?
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The promise of computerized analysis?
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A detection/diagnosis/quantification task involving medical images
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How to build a traditional CAD system?

Normal lymph node tissue Breast cancer metastasis



How to build a traditional CAD system?
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How to build a traditional CAD system?

Normal lymph node tissue Breast cancer metastasis
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computers with superhuman performance



Deep learning

30 options per turn
40 turns per game

250 options per turn
150 turns per game







How to build CAD systems at (super-)human level?
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Litjens et al. Sci Rep. 2016



Clinical applications

Biomarker research

Applications of computational pathology
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Detection of metastases in lymph nodes
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Detection of metastases in lymph nodes



Data

Center Number of slides

CWZ (Nijmegen) 200

LabPON (Hengelo) 200

Rijnstate (Arnhem) 200

Radboudumc (Nijmegen) 439

UMCU (Utrecht) 350

Total 1399







Comparison to human experts

Ehteshami et al. JAMA. 2017
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Automated counting of mitoses









Automated counting of mitoses



Problem 1: reference standard



Solution: PHH3 IHC



Problem 2: staining variation



Solution 2: Data augmentation



Tellez et al. IEEE Transactions on Medical Imaging. Accepted



Mitosis detection Mitosis density



56 mitoses Immediate visibility via hot-spots



38 mitoses
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Multiplexing in routine…



Current multiplexing strategies in research…

• A novel immunohistochemical sequential multi-labelling 
and erasing technique enables epitope characterization of 
bone marrow pericytes in primary myelofibrosis. 
Madelung et al. Histopathology. 2012

• Prediction of survival in diffuse large B-cell lymphoma 
based on the expression of genes reflecting tumor and 
micro-environment. Alizadeh et al. Blood, 2011

• Distribution Patterns of Dendritic Cells and T Cells in 
Diffuse Large B-Cell Lymphomas Correlate with Prognoses. 
Chang et al. Clin Canc Res, 2007

• Many others...



Current literature focusses on ideal situations
Idealized setting

• Consecutive sections
• Similar stains
• No major tissue artifacts
• Rough alignment present

Deviations from idealized setting have huge impact
• Median Hausdorf distance between landmark points triples (25 microns to 

75 microns)1

Image from Mueller et al. Computerized Medical Imaging and Graphics. 2011

1Song et al. IEEE Transactions on Biomedical Engineering. 2014



Most studies don’t have ideal data

Litjens et al. SPIE Medical Imaging. 2016



‘Real’ data
Clinical trial for immunotherapy

• 31 stains per section
• 0.48 microns per pixel



‘Ideal’ data



Experimental design



Experimental design



Quantitative results – ‘Ideal’ data
• Median registration error across 

all stains is 4 micron

• Maximum registration error is 
14 micron



Qualitative results






Quantitative results – ‘Real’ data



Qualitative results: Patient 1





Qualitative results



Quantification of IHC



Quantification of IHC



Quantification of IHC



Lymphocytes detection by…

Semantic SegmentationBounding box Center point

FCNN U-NETYOLO locality 
sensitive method

Hans Mart Francesco Zaneta

Classification



Approach II -multi-class mask

Class I

Class II

Class III



Quantitative results



Qualitative results - clusters
Manual 
annotation

CNN result



Qualitative results - artifacts

Swiderska et al. MIDL. Accepted
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Tumor-associated stroma







Tumor-associated stroma

Ehteshami et al. Modern Pathology. Accepted



Other areas of research
Oncology

Breast Prostate Colorectal Cancer metastases

Other

Kidney transplants Software development

Tumor/stroma-ratioSegmentation

Prognosis

Classification

Mitosis counting

Prognosis

Detection

Quantification of immunohistochemistry

Stain normalization

Impact of tumor infiltrating lymphocytes

Tumor budding
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