

Application Of Machine Learning In Drug Design

Leo Bleicher⁺, Ton van Daelen⁺, Moises Hassan⁺, Dana Honeycutt⁺, Kevin Merlo^{*}, Matthew Sage⁺, Adrian Stevens[‡] [†]Dassault Systemes BIOVIA Corp., 5005 Wateridge Vista Drive, San Diego, CA 92121, United States, [‡]Dassault Systèmes SE | Rue Evariste Galois, Immeuble Emerald Square D, CS60354, 06906 Sophia Antipolis Biot, France

3DEXPERIENCE[®]

It can take four years, and up to ca. 4,000 antibodies to find a lead candidate. What if we could reduce this timeline and express only a fraction of these proteins?

Machine Learning (ML) and Artificial Intelligence (AI) are transforming scientific innovation

Scientific innovation process is an experimentally-driven Design-Make-Test-Analyze cycle. Its success rate is driven by making the best informed design decisions on 'what to make next?'

The wealth of historical experimental data available means that many biologically relevant end-points can be predicted in silico using machine learning. Potentially, new virtual entities can be designed and rapidly optimized, before being passed to the lab to be physically expressed and screened.

Optimization: Scoring and Ranking

Each member of a virtual generation is scored according to how closely the predicted properties meet the target product profile requirements.

Score is assessed either by:

- Multi-Objective Optimization (MOO) methods such as Pareto-based optimization
- or by transforming the MOO into a Single Objective Optimization (SOO) problem using approaches such as Weighted Sum or Derringer Desirability

Automated Molecular Optimization: Multi-Objective Progress

Target activities Increasing, Balanced	Dopamine D2 receptor mean vs. Iteration 12.5 10.0 7.5 $\mathbf{F} \neq \mathbf{F} \neq F$	Departine D3 receptor _mean vs. Iteration $ \begin{array}{c} 15 \\ 10 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 2.5 \\ 5 \\ 5 \\ 2.5 \\ 5 \\ 5 \\ 5 \\ 2.5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ $
Anti-target activities Decreasing	5 0 0 10 15 -20 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 17.5 20.0 10 10 10 10 10 10 10 10 10 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5
ADME property Improving	BBB Level_mean vs. Neration 1.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 generation	
Toxicity Decreasing	Ames Mutagenicity_mean vs. Reration -5 -10 -5 -10 -20 -25 -25 -25 -25 -25 -25 -25 -25	

Predicting Properties Associated with the Target Product Profile

Using available experimental data, Machine Learning (ML) algorithms and molecular simulations are applied to generate predictive models.

- Use a set of models to assess each virtual library member relative to the target product profile
- Rapidly assess the suitability of each member of a virtual generation before physically making and testing
- Dynamic: Models are not static. As new experimental data is generated, models are retrained and updated

Improve the efficiency of the Design cycle:

- Rapidly generate and optimize new molecular entities against the full target product profile *in silico,* before submitting optimized leads to the lab
- Use latest lab results in active learning cycle to retrain Machine Learning models

Sequence-based Molecular weight Isoelectric point

- Charge
- hydrophilicity & hydrophobicity
- 3D Structure-based
 - Aggregation
 - Developability Index
 - Binding Affinity
 - Mutation Energy

Molecule Name 2FJF_LH_FAB_LH_FV.210ASP 2FJF_LH_FAB_LH_FV.208GLU 2FJF_LH_FAB_LH_FV.53GLU L:PHE66>LYS 2FJF_LH_FAB_LH_FV.53LYS

Generate

Homology

Models

Transformation H:LEU111>ASP H:PHE109>GL L:PHE66>GLU

			Best candidates					
	Transformation	Aggregation	Mutation Energy Stability	EFFECT	VDW	ELEC	ENTROPY	Objective
SP	H:LEU111>ASP	-575.639954	0.76	NEUTRAL	1.16	0.46	-0.06	-13.386
LU	H:PHE109>GLU	-577.852722	2.03	DESTABILIZING	3.54	0.91	-0.25	-13.315
J	L:PHE66>GLU	-568.759521	0.68	NEUTRAL	-1.15	1.86	0.41	-13.233
3	L:PHE66>LYS	-553.424255	-0.16	NEUTRAL	-1.77	0.38	0.67	-12.956
RG	H:VAL108>ARG	-532.901123	-0.17	NEUTRAL	-3.75	0.74	1.67	-12.477
G	L:SER56>ARG	-522.823792	-1.19	STABILIZING	-5.09	0.82	1.18	-12.341
RG	H:THR57>ARG	-523.671753	-0.88	STABILIZING	-5.27	1.8	1.07	-12.33
RG	H:LEU111>ARG	-579.764709	0.63	NEUTRAL	0.3	0.62	0.21	-12.097
SP	H:PHE109>ASP	-582.604126	1.83	NEUTRAL	2.8	1.36	-0.31	-12.037
SP	H:PHE110>ASP	-570.168152	-0.05	NEUTRAL	-0.76	0.65	0.01	-11.963

vincio-	SQDVST	TAVAWY	′QQKP	GKAPKL	LIYSASF	LYSGVPS	SRFSGS	GSGTDF	ILTISSLQPEDFATYYCQQSYT	ТР					
	**			*		•	lr k R C	npu nov Reg CDF	it sequent wn Humar ions for Rs, with po	ces a n Abs modi otentia	re comp fication I to enha	ared to identitionce Ab	o co fied, o pro	llection o avoiding perties	F
						•	A S	lmi ugų	no Acid gested loc	Subst ales, (itution N generatir	/latrix ng Outp	is a out S	applied a equences	t \$
									Output Sec	quence	5				
									Output Sec	quence	S Transformation]			
Ser	Thr	Тгр	Tyr	Val					Output Sec Molecule Name 2FJF_LH_FAB_LH_F	quences	Transformation H:LEU111>ASP				
Ser	Thr	Тгр	Tyr His	Val					Output Sec Molecule Name 2FJF_LH_FAB_LH_F	QUENCES FV.210ASP FV.208GLU	Transformation H:LEU111>ASP H:PHE109>GLU	-			
Ser Ala Ara	Thr Ala Arg	Тгр	Tyr His Phe	Val Ala Cvs					Output Sec Molecule Name 2FJF_LH_FAB_LH_F 2FJF_LH_FAB_LH_F	FV.210ASP FV.208GLU FV.53GLU	S Transformation H:LEU111>ASP H:PHE109>GLU L:PHE66>GLU				
Ser Ala Arg Asp	Thr Ala Arg	Тгр	Tyr His Phe	Val Ala Cys					Output Sec Molecule Name 2FJF_LH_FAB_LH_F 2FJF_LH_FAB_LH_F 2FJF_LH_FAB_LH_F	FV.210ASP FV.208GLU FV.53GLU FV.53LYS	Transformation H:LEU111>ASP H:PHE109>GLU L:PHE66>GLU L:PHE66>LYS				
Ser Ala Arg Asn	Thr Ala Arg Asn	Тгр	Tyr His Phe Trp	Val Ala Cys Ile					Output Sec Molecule Name 2FJF_LH_FAB_LH_F 2FJF_LH_FAB_LH_F 2FJF_LH_FAB_LH_F 2FJF_LH_FAB_LH_F	FV.210ASP FV.208GLU FV.53GLU FV.53GLU FV.53LYS FV.207ARG	S Transformation H:LEU111>ASP H:PHE109>GLU L:PHE66>GLU L:PHE66>LYS H:VAL108>ARG				
Ser Ala Arg Asn Asp	Thr Ala Arg Asn Asp	Тгр	Tyr His Phe Trp	Val Ala Cys Ille Leu					Output Sec Molecule Name 2FJF_LH_FAB_LH_F 2FJF_LH_FAB_LH_F 2FJF_LH_FAB_LH_F 2FJF_LH_FAB_LH_F 2FJF_LH_FAB_LH_F	FV.210ASP FV.208GLU FV.53GLU FV.53LYS FV.207ARG FV.50ARG	S Transformation H:LEU111>ASP H:PHE109>GLU L:PHE66>GLU L:PHE66>LYS H:VAL108>ARG L:SER56>ARG				
Ser Ala Arg Asn Asp Cys	Thr Ala Arg Asn Asp Cys	Тгр	Tyr His Phe Trp	Val Ala Cys Ile Leu Met					Output Sec Molecule Name 2FJF_LH_FAB_LH_I 2FJF_LH_FAB_LH_I 2FJF_LH_FAB_LH_I 2FJF_LH_FAB_LH_I 2FJF_LH_FAB_LH_I 2FJF_LH_FAB_LH_I	FV.210ASP FV.208GLU FV.53GLU FV.53LYS FV.207ARG FV.50ARG FV.159ARG	S Transformation H:LEU111>ASP H:PHE109>GLU L:PHE66>GLU L:PHE66>LYS H:VAL108>ARG L:SER56>ARG H:THR57>ARG				
Ser Ala Arg Asn Asp Cys Gln	Thr Ala Arg Asn Asp Cys Gln	Тгр	Tyr His Phe Trp	Val Ala Cys Ile Leu Met Phe					Output Sec Molecule Name 2FJF_LH_FAB_LH_I 2FJF_LH_FAB_LH_I 2FJF_LH_FAB_LH_I 2FJF_LH_FAB_LH_I 2FJF_LH_FAB_LH_I 2FJF_LH_FAB_LH_I 2FJF_LH_FAB_LH_I	FV.210ASP FV.208GLU FV.53GLU FV.53GLV FV.53LYS FV.207ARG FV.207ARG FV.159ARG FV.210ARG	Transformation H:LEU111>ASP H:PHE109>GLU L:PHE66>GLU L:PHE66>LYS H:VAL108>ARG L:SER56>ARG H:THR57>ARG H:LEU111>ARG				
Ser Ala Arg Asn Asp Cys Gln Glu	Thr Ala Arg Asn Cys Gln Glu	Тгр	Tyr His Phe Trp	Val Ala Cys Ile Leu Met Phe Ser					Molecule Name 2FJF_LH_FAB_LH_F 2FJF_LH_FAB_LH_F	QUENCES FV.210ASP FV.208GLU FV.53GLU FV.53GLU FV.53GLYS FV.207ARG FV.207ARG FV.159ARG FV.210ARG FV.210ARG FV.208ASP	Transformation H:LEU111>ASP H:PHE109>GLU L:PHE66>GLU L:PHE66>LYS H:VAL108>ARG L:SER56>ARG H:THR57>ARG H:DHE109>ASP				

Sustemes The **3DEXPERIENCE** Company