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It can take four years, and up to ca. 4,000 antibodies to find a lead candidate. What if we could reduce this timeline and express only a fraction of these proteins?

Machine Learning (ML) and Artificial Intelligence (Al)
are transforming scientific innovation

Scientific innovation process is an experimentally-driven Design-
Make-Test-Analyze cycle. Its success rate is driven by making the
best informed design decisions on ‘what to make next?’

The wealth of historical experimental data available means that
many biologically relevant end-points can be predicted in silico
using machine learning. Potentially, new virtual entities can be
designed and rapidly optimized, before being passed to the lab to
be physically expressed and screened.

Results
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Optimization:
Scoring and Ranking

Each member of a virtual generation is scored
according to how closely the predicted properties
meet the target product profile requirements.

Score is assessed either by:

e Multi-Objective Optimization (MOO) methods
such as Pareto-based optimization

e or by transforming the MOO into a Single
Objective Optimization (SOO) problem using
approaches such as Weighted Sum or Derringer
Desirability

Automated Molecular Optimization:
Multi-Objective Progress
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Predicting Properties Associated
with the Target Product Profile

At the end of each enumeration cycle, the virtual members are

Pruning and Evolving _ ¢ | |
ranked and the most optimal entities of the population retained.

new Generations

The optimization cycle ends if:

e The target product profile has been met

e The maximum number of iterations has been completed or
 No further improvement can be achieved

Otherwise, the top entities are used as starting points for a next
virtual generation of new entities and optimization
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Best candidates

Molecule Name Transformation Aggregation  Mutation Energy Stability EFFECT VDW ELEC ENTROPY Objective
2FJF_LH_FAB_LH FV.210ASP HLEUI11>ASP 575630954 0.76 NEUTRAL 116 046 -0.06 -13.386
IFJF_LH_FAB LH FV208GLU HPHE109>GLU  -577.852722 203 DESTABILIZING 354 091 025 -13.315
IFJF_LH_FAB_LH_FV53GLU L PHES6>GLU 568759521 068 NEUTRAL 115 186 041 -13.233
2FJF_LH_FAB_LH_FV.53LYS L PHEB6>LYS 553424255 016 NEUTRAL A77 038 067 -12.956
2FJF_LH_FAB_LH_FV.207ARG HVAL108>ARG 532901123  -0.17 NEUTRAL 375 074 167 12,477
2FJF_LH_FAB_LH_FV.50ARG L:SERS6>ARG 522823732  -1.19 STABILIZING 509 082 118 -12.341
A u to m ate d Le a d O ti m i Zat i O n (A LO ) 2FJF_LH_FAB_LH_FV 159ARG H.THRS7>ARG  -523.671753  -0.88 STABILIZING 527 18 107 -12.33
p 2FJF_LH_FAB LH_FV.210ARG HLEUN11>ARG ~ -579.764709  0.63 NEUTRAL 03 062 021 -12.097
9FJF_LH_FAB_LH_FV208ASP H-PHE109>ASP 582604126  1.83 NEUTRAL 28 136  -0.31 12,037
I m p rove t h e effl C | en Cy Of t h e / . t N 2FJF_LH_FAB_LH_FV 209ASP H-PHET0-ASP 570168152  -0.05 NEUTRAL 076 065 0D -11.963
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* Rapidly generate and
optimize new molecular
entities against the full
target product profile
in silico, before submitting

optimized leads to the lab
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Each cycle begins with either experimental hits and
leads, known drugs or the top members of a previous
ALO cycle. From these sequences, novel virtual analogs
are generated and can be either relatively similar or
highly novel, depending on the level of desired diversity.

Generative Lead
Mutations

" Input Sequence(s)
[name [ idencity | Simiarity [ start | nd [sequence |

| 2FJF_L_VL_KAPPA_VGene_1_95 100 100 1 95 DIQMTQSPSSLSASVGDRVTITCRASQDVSTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYTTP

Input sequences are compared to collection of
known Human Abs

| .

Using available experimental data, Machine Learning Sequence-based

(ML) algorithms and molecular simulations are applied to e Molecular weight
generate predictive models. e |[soelectric point
e Use a set of models to assess each virtual library e Charge
member relative to the target product profile  hydrophilicity & hydrophobicity
 Rapidly assess the suitability of each member of a 3D Structure-based
virtual generation before physically making and e Aggregation
testing e Developability Index
e Dynamic: Models are not static. As new experimental e Binding Affinity
data is generated, models are retrained and updated e Mutation Energy

O o —— : ; - : « Regions for modification identified, avoiding
e S e CDRs, with potential to enhance Ab properties
sequence- « Amino Acid Substitution Matrix is applied at
Molecule Name Transformation based ‘ ; - — , : suggested locales, generating Output Sequences
mAb Mutation  E (stability) Effect Solubility Aggregation Half-Life
73 1 ) ) | =A% .
et et B i AT idobiaind Properties 1 L:Phe66>Glu _0.06 Neutral 423 -522 Same
SR L AR LA Vet ey — 2 Phe66>Lys 0.32 Neutral 420 -523 Same Substitution Matrix Output Sequences
2FJF_LH_FAB_LH_FV53GLU L:PHE66>GLU 3 L-Wild 0 Neutral 407 -480 - — N
I LA FAR LI IN-SNS L FEREEYS 4 L:Ser56>Arg 0.56 Neutral 422 -555 Same 5 _ 2
A Ng A Aw O G Gl G W 2FJF_LH_FAB_LH_FV.210ASP HLEU111>ASP
Asn  Gin  Arg Asn Arg  Arg Ala Ala Ala Gin Tyr Ala Ala His Ala AR LN Ve Ao
Ca | C u Iate Cys Lys Asp Glu Asn  Asn Leu lle Arg His Arg  Arg Phe  Cys =i F_LH_FAE_I_H_F\i e LiPHEBE}S;U
Structu re_ Gin Gin Asp Asp Met Met Asn lle Asn Asn Trp lle QFJF_LH_FABF‘-H_FM RS sl bl
Generate 2FJF_LH_FAB LH FV207ARG HVAL108>ARG
H I ;.% b d Glu Glu Gin  Glu Phe Phe Asp Leu Asp  Asp Leu o = = P——
kTN JF LH FAB LH FV50ARG LS >ARG
Omo Ogy {’ﬁ% ase . Gly Gly His His Thr Thr Gln Phe Cys Cys Met 9FJF LH FAB LH FV 159ARG HTHR57>ARG
Models el Pro pe rties 3 I H lys Ly Tyr  Tyr Gl Ty Gin Gl P EFJF_LH_FAH_;H_FV21DARG T ————
? — ‘: ':r: Leub Lys Pro  Met Val Val His Val Glu Glu Ser 2FJF_LH_FAB_LH_FV.208A5P H PHE109=ASP
Lys Ser Ser  Ser Met Gly lle Thr 2FJF_LH_FAB_LH_FV209ASP H PHE110>ASP
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