

Digital Mammogram National Database

Professor Michael Brady FRS FREng

Medical Vision Laboratory

Oxford University

Chairman: Mirada Solutions Ltd

IBM Hursley & Oxford e-Science Centre

≻Architecture, user requirements

Mirada Solutions Ltd

>Workstation, image normalisation

• Oxford University, KCL, UCL

>Data mining, epidemiology, image analysis

• Breast screening centres

St. Georges, Oxford, Guy's, Edinburgh, W. Scotland

DIAMOND *end-user* project goals

- Teaching tool for radiologists, radiographers
 St George's Hospital
- Tele-diagnosis
 - Edinburgh Breast Screening Unit, W. of Scotland
- Algorithm development: data mining
 - Oxford Radcliffe Breast Care Unit
- Epidemiology
 - ➤ Guy's Hospital, London
- Quality control
 - Oxford Medical Vision Laboratory

Clinicians want to **use** the Grid & they profoundly wish to remain ignorant about how it works

Challege: imaging parameters

The same breast; the exposure time on the right is shorter than that on the left.

Qualitative assessment of risk \rightarrow quantitative

Top left: Cranio-caudal image (plus *Top left*: 3D reconstruction breast boundary and marked feature showing feature location

Top right. Mediolateral oblique image

Bottom: image gallery & control panel

Bottom left: SMF viewed as dense tissue surface

Right: previous CC image registered to current CC

Image data mining: *FindOneLikeIt*

- Learn a model of normal variation of images from all centres bar one
- compile a mapping from SMF value (dense breast tissue) to imaging parameter choice
- compare to SMF value → imaging parameter choice in the remaining centre
- "women with denser breasts tend to be overexposed at this centre"

For several years, I had wanted to find a way to gain the statistical power I needed for medical image analysis – the Grid offers the potential to provide it!

And, not just for medical image analysis ...
mammograms are typical of medical images

>many parameters (potentially) of interest

>relatively few images gathered at each individual centre

• insufficient statistical power in the database garnered from a small number of centres

• The Grid provides the statistical power at acceptable bandwidth and with guarantees on secure image/data transmission

Ontology based on BIRADS

Personal data

➤Family history, age, HRT, …

mammographic signs

Microcalcification, spiculations, patterns of dense tissue

- MRI signs: angiogenesis, permeability, tortuosity, ...
- ultrasound signs: elasticity
- PET signs: biochemical activity

DIAMOND

Single Image Server node

Two separate interactions with eDiaMoND shown: Query and Retrieve

The Grid Service Container authenticates requests, creates a secure context then transfers control to the called service.

eDiaMoND services are a façade for OGSA-DAI data services

OGSA-DAI services implement a RoleMap to map individuals to roles

DIAMOND Beyond eDiamond

- The architectural infrastructure for eDiamond is not limited to mammograms or even cancer
- The only specialisation to mammography is image normalisation SMF, and the knowledge embodied in programs about masses, breast dense tissue and microcalcifications
- Medical image analysis is moving beyond diagnosis to monitoring disease progression and therapy, e.g.
 - > molecular medicine
 - > software-enhanced pharmaceuticals (eg Parkinson's)

