e-Science in a Virtual Laboratory

L.O. (Bob) Hertzberger

Computer Architecture and Parallel Systems Group
Department of Computer Science
Universiteit van Amsterdam

bob@science.uva.nl

Outline

What is e-Science

Why is it important

How is it realized

Examples

Conclusions

What is e-Science?

e-Science is enhanced science

What is e-Science?

e-Science is enhanced science

The what of e-Science

'e-Science is about global collaboration in key areas of science, and the next generation of infrastructure that will enable it

John Taylor, 2001

The what of e-Science

'e-Science is about time and location independent global collaborative experimental science via sharing of facilities exploiting the next generation of (inter)national infrastructure that will enable it

Bob Hertzberger (VL-E), 2003

The what of e-Science

- WEB was about exchanging information
- e-Science is about sharing resources applying Grid:
 - ✓ Experimental facilities
 - ✓ Data & Information repositories
 - ✓ Application services

The why of e-Science

'e-Science will change the dynamic of the way science is undertaken'

John Taylor, 2001

The Why of e-Science

- Increased complexity of experiments results in:
 - ✓ More demands for multi-disciplinarity
 - ✓ Increased amounts & distribution of data and information
 - ✓ Increased complexity of:
 - ✓ analysis tools
 - ✓ variety of data & information

Role e-Science in society

- Increased complexity of society
 - Science initiator of new solutions
 - ✓ Solutions become part of data driven society
 - Distribution of data & information sources
 - Access towards more & larger variety of data & information (multimedia)

The How of e-Science

- Multi-disciplinary activity between:
 - ✓ Domain scientist
 - ✓ ICT scientist
- Combining human expertise & knowledge
- Next generation infrastructure is differentiator
- For us via VL methodology

Simulated Vascular Reconstruction (Example)

- Simulated Vascular Reconstruction in a Virtual Operating Theatre
 - patient specific vascular geometry
 - blood flow simulation
 - pre-operative planning
- In cooperation with Leiden University Medical Center (LUMC, prof. Reiber)

Simulated Vascular Reconstruction (Example)

MACS: Material Analysis of Complex Surface

VLAM-G Virtual Laboratory AMsterdam

A collaborative analysis environment for applied experimental science

Objectives

- Enable VLAM-G users to define, execute, and monitor their experiments
- Provide to VLAM-G users:
 - ✓ location independent experimentation,
 - √ familiar experimentation environment
 - ✓ assistance during their experiments
 - ✓ Easy way to bring/port new/existing applications to the Grid
- Developing application prototypes to check ideas and to learn

Experiment Steps

Realization Methods

- Application layer
 - ✓ Case studies
- Virtual Laboratory layer
 - ✓ Provides VLAM-G modules
 - ✓ Offers an information management system
- Grid Layer

VIMCO: Virtual Laboratory Information Management for CO-operation

Assisting Information Federation

- VIMCO objectives for scientists:
 - ✓ Assistant
 - ✓ Enabler / Facilitator
- VIMCO objectives for VLAM-G:
 - ✓ Service & Session Information Manager

Experiment Steps & Difficulties

designing the experiment

AMsterdam

Knowledge and Expertise!
Experiment Archiving!

performing the experiment

Information Organization!
Logging Information/Data!

analyzing the experiment results

Approach to Data
Analysis and Tools!

© April 2002 - E. C. Kaletas, H. Afsarmanesh

VL ARCHIVE

EXPRESSIVE

MACS

VLAM-G Experimentation Environment Data Model

Process-Flow Template

 Graphical representation of data elements and processing steps in an experimental procedure

Information to support context-sensitive assistance

Study

AMsterdam

Descriptions of experimental
 steps represented as an instance of
 a PFT with references to
 experiment topologies

Experiment Topology

Graphical representation of self-contained data processing modules attached to each other in a workflow

Snapshot of the VLAM-G experiment editor/viewer

Porting the Experiments to the Grid

Virtual Lab AMsterdam

Using VLAM-G toolkit

- 1. User logs-on to VLAM
 - ✓ VLAM Middleware
 - ✓ User Interface
 - ✓ Authentication
- 2. Select a service
 - ✓ Web-based interface to access the VLAM resources
 - Physical devices,
 - specialized-analysis software
 - etc.

Conclusion

- e-Science model & work has to include whole technology chain
 - ✓ Application
 - ✓ Virtual Laboratory
 - ✓ Grid
- Application cases provide feedback to generic layer
- Workflow analysis very useful to capture knowledge
- Content Management: VLAM-G middleware

Thanks to

M-A. Abtroun, H. Afsarmanesh, R. Belleman,
A. Benabdelkader, G. B. Eijkel, A. Frenkel,
C. Garita, D. L. Groep, R. M. A. Heeren, Z.
W. Hendrikse, A. van Inge, J. Kaandorp, E. C. Kaletas, V. Korkhov, D. Shamonin, P. Sloot,
P. Sterk, D. Vasunin, A. Visser, H. H. Yakali,
L. O. Hertzberger.

Virtual Lab AMsterdam

Participants

Tu Delft

