Augmenting and Accelerating Drug Discovery using Artificial Intelligence

Christopher C. Gibson, Ph.D. Co-Founder & CEO <u>chris@recursionpharma.com</u>

At Recursion, we are augmenting phenotypic screens, the pace of discovery, and the ability to identify worrisome signals early in the R&D process. The basis of our approach is to broadly probe both disease biology, and the effect of drugs on disease biology, across 1000+ dimensions of cellular morphology in an inexpensive, unbiased, and generalizable image-based assay. While this systems-based approach already affords us high confidence in the translatability of our hits, our application of artificial intelligence methods to our data further increases that were never tested in the same experiment. Our AI methods are also uniquely advantaged by a massive in-house dataset, which is constantly growing at the rate of 2M cellular images per week, generated across hundreds of relatable experiments. We describe here selected applications of the Recursion technology, which has generated a pipeline of 30+ rare genetic disease programs in ~2 years, rediscovered late-stage clinical assets for multiple conditions at a fraction of the cost, generated new targets in areas such as Immuno-Oncology, and increased screening efficiency by maximizing biological diversity of compound libraries. These data demonstrate Recursion's early progress towards our mission of decoding cellular biology to radically improve lives.

We have developed 100s of unique cellular models We have over 40 cytokine phenotypes for novel inflammation, auto-immunity, and oncology drug discovery **CYTOKINE TREATED** MEANINGFUL CLUSTERING **OF PHENOTYPES** CELLS gen breakage syndrome /strophy cher, Krabbe Disease without cerebellar ataxia Oncostatin M IFNgamma TNF-a 0.1 We can predict targets and MoA using Al **HIGH-DIMENSIONAL PHENOTYPES RECAPITULATE MECHANISMS** SMART HIT DIVERSITY **RECOVER SIMILAR** EXPANSION LIBRARY HIT COMPOUNDS 0.4 **REC-2017 REC-2017** 0.5 Disease Score Mean **REC-1191 REC-589** mTOR drug 1 mTOR drug 2 PI3K drug 1 PI3K drug Compounds with similar MOA have similar impact on individual disease phenotypes. Shown here are different PI3K family inhibitors that differ in selectivity and show corresponding

differences in top 4 features.

Gene	Disease	Gene	Disease
ANG	Familial Amyotrophic Lateral Sclerosis	MANBA	Mannosidosis Beta
APC	Adenomatous polyposis coli	MFN2	Charcot-Marie-Tooth
ASPM	Primary autosomal recessive microcephaly	MID1	Opitz GBBB syndrome, Type 1
ATM	Ataxia Telangiectasia	MTM1	Myotubular myopathy, X-linke
ATP2A2	Brody Myopathy	NBN	Aplastic Anemia, ALL, Nijmeg
ATP8B1	Cholestasis	NF2	Neurofibromatosis Type II
DNAAF3	Ciliary Dyskinesia	NIPBL	Cornelia de Lange Syndrome
CEP290	Leber congenital amaurosis, Joubert, Senior-Loken	PABPN1	Oculopharyngeal muscular dy
CCM2	Cerebral Cavernous Malformation	PEX13	Zellweger syndrome
CNGA3	Achromatopsia-2	PKHD1	Polycystic Kidney / Hepatic D
CREBBP	Rubinstein-Taybi Syndrome	PRPF31	Retinitis Pigmentosa
DHCR7	Smith-Lemli-Optiz Syndrome	PSAP	Combined SAP, Atypical Gauc
DMPK	Myotonic Dystrophy	RPS10	Diamond Blackfan Anemia
DNAH5	Primary Ciliary Dyskinesia	RPS19	Diamond Blackfan Anemia
DSP	Familial Cardiomyopathy	RPS6KA	3 Coffin-Lowry Syndrome
EFHC1	Juvenile Epilepsy	SCN8A	Cognitive impairment with o
EXT1	Hereditary multiple exostoses, Langer-Giedion	SMAD4	Hereditary Hemorrhagic Tela
EXT2	Potocki-Shaffer Syndrome	SMARCE	31 Coffin-Siris Syndrome
FAM161A	Retinitis Pigmentosa	SMN1	Spinal Muscular Atrophy
GALNS	Mucopolysaccharidosis Type IV (Morquio)	STK11	Peutz-Jeghers Syndrome
HFE	Hemochromatosis	STX11	Hemophagocytic Lymphohisti
KMT2D	Kabuki syndrome	TCOF1	Treacher Collins Syndrome
KRIT1	Cerebral Cavernous Malformation	TP53	Cancers (various)
LCA5	Leber congenital amaurosis	TSC2	Lymphangioleiomyomatosis
LRRK2	Inherited Parkinson disease	UBA1	Spinal Muscular Atrophy

of genetic disease We can generate efficient smart libraries with phenotypic profiling We can shrink the size of a parent library by 80% or more by maximizing for biological diversity after phenotypic profiling.

0.5 Disease Score Mean

REC-1364

REC-2017

S 5 õ S J \mathbf{O} Seas

We are applying ML to complex macrophage phenotypic states and discovering novel IO targets

pharmaceuticals

We have established an internal pipeline of 30+ programs in

IN VITRO	IN VIVO		
NEUROFIBROMATOSIS TYPE 2 (NF2)	SPINAL MUSCULAR ATROPHY (SMN) PROGRAM 1		
PEUTZ-JEGHERS SYNDROME (STK11)	SPINAL MUSCULAR ATROPHY (SMN) PROGRAM 2		
USP7- ULTRA-RARE DISEASE	DIAMOND BLACKFAN ANEMIA (RPS19)		
LIMB-GIRDLE MUSCULAR DYSTROPHY (POMT1)	METACHROMIC LEUKODYSTROPHY/ATYPICAL		
COFFIN-LOWRY SYNDROME (RPS6KA3)	GAUCHER DISEASE (PSAP)		
DARIER DISEASE (ATP2A2)	PRE-IND		
HEREDITARY MULTIPLE OSTEOCHONDROMAS (EXT1, EXT2)	CEREBRAL CAVERNOUS MALFORMATION PROGRAM 1 <i>(IND expected Q1, 2018)</i>		
CEREBRAL CAVERNOUS MALFORMATION (KRIT1)	ATAXIA-TELANGIECTASIA PROGRAM 1 <i>(IND expected Q1, 2018)</i>		
JP / HEREDITARY HEMORRHAGIC TELANGIECTASIA (SMAD4)	ATAXIA-TELANGIECTASIA PROGRAM 2		
UNDISCLOSED PARTNER INDICATION PARTNER 1, PROGRAM 1			
UNDISCLOSED PARTNER INDICATION PARTNER 1, PROGRAM 2	201		
UNDISCLOSED PARTNER INDICATION PARTNER 1, PROGRAM 3	JUT		
UNDISCLOSED PARTNER INDICATION PARTNER 1, PROGRAM 4	σροσολιίς		
UNDISCLOSED PARTNER INDICATION PARTNER 1, PROGRAM 5	FRUGRAIVIS		
UNDISCLOSED PARTNER INDICATION PARTNER 2, PROGRAM 1			