AETIONOMY - Data, Disease Modeling and Reasoning

Martin Hofmann-Apitius

Academic Co-Coordinator of AETIONOMY PRISME Forum Spring 2017 Meeting Berlin, May 18, 2017

Mission

To increase knowledge of the causes of Alzheimer's and Parkinson's Disease by generating a mechanism-based taxonomy; to validate the taxonomy in a prospective clinical study that demonstrates its suitability for identifying patient subgroups (based on discrete disease mechanisms); to support future drug development and lay the foundation for improved identification and treatment of patient subgroups currently classified as having AD or PD.

A Non-Trivial Challenge: Development of a "mechanism-based taxonomy for neurodegenerative diseases"

In 2011, Kola and Bell published a remarkable paper in Nature Reviews Drug Discovery. With their "Call to reform the taxonomy of human disease" they proposed a new, mechanismbased classification of human disease.

A call to reform the taxonomy of human disease

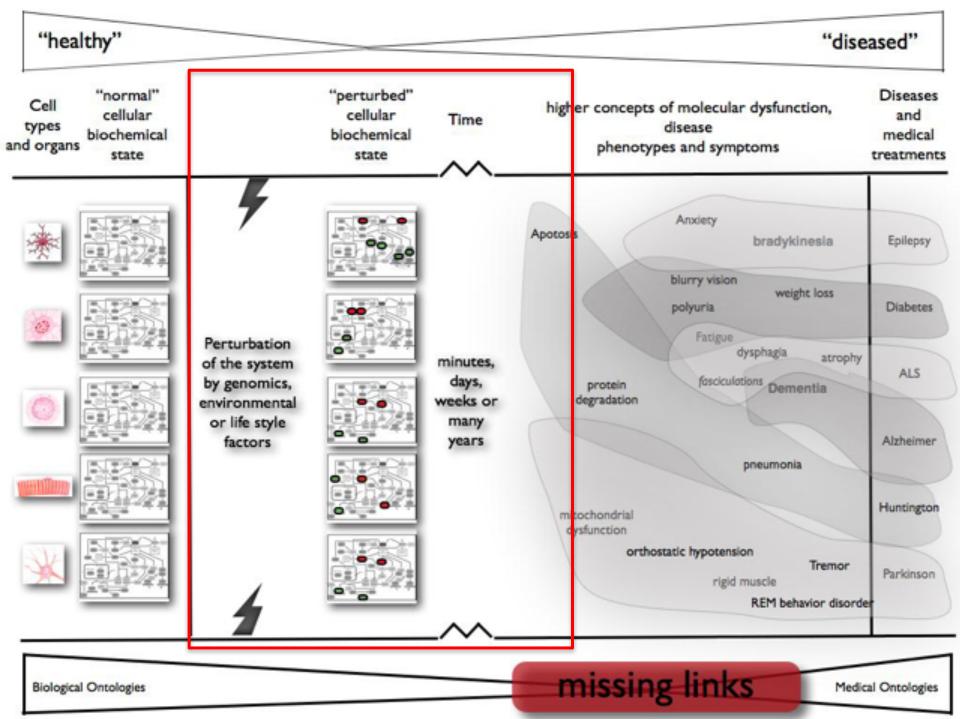
Ismail Kola and John Bell

A coordinated effort to incorporate advances in the understanding of the molecular and genomic variations in common diseases, such as hypertension, into their diagnosis and treatment could transform drug development and medicine.

Many common human diseases are still diagnosed as if they were homogenous entities, using criteria that have hardly changed for more than a century. For example, a person with a systolic blood pressure of 140 mm Hg or greater and a diastolic blood pressure of 90 mm Hg or greater is diagnosed with hypertension, irrespective of the heterogeneous underlying molecular mechanisms in different individuals. Furthermore, the treatment approach for diseases that are diagnosed in this way is generic, with empiricism as its cornerstone. Continuing based on the presence of a shared mutation and/or a deregulated pathway, rather than on tumour location, has not yet been initiated to our knowledge, but is an approach that regulatory agencies may be comfortable with in the future.

The lack of recognition of disease heterogeneity in clinical development and medical practice has a number of well-known consequences. First, it will probably reduce the likelihood of success of clinical trials, perhaps more so for targeted therapies that have been pursued in

AET (


Kola, I., & Bell, J. (2011). A call to reform the taxonomy of human disease. *Nature Reviews Drug Discovery*, *10*(9), 641-642.

🖉 Fraunhofer

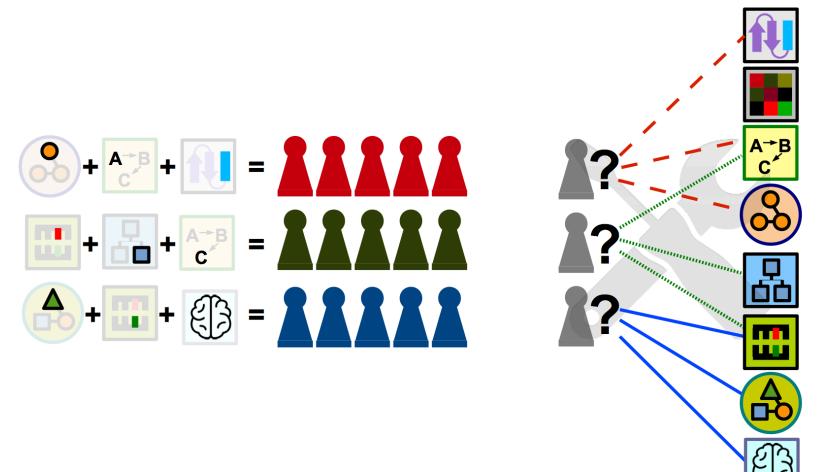
Data and Knowledge in Neurodegenerative Disease Research: incomplete, scattered, mono-modal

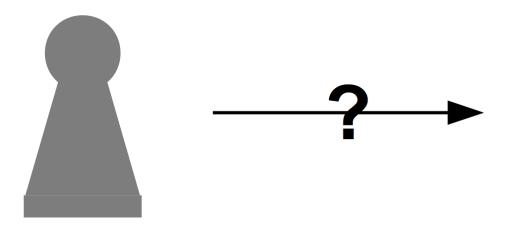
Data resources

Pathways

Gene Expression

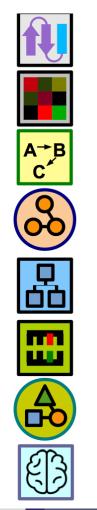
Addtional: UniProt, PubMed, OMIM, Reactome, HGNC, ENSEMBL, ChEMBL, ...





classifying system / patient cohort covering all tests?

correlations between different parameters?


We therefore need to integrate heterogeneous data and knowledge and glue them together in *models*

Excursion:

Making Data Findable, Accessible, Interoperable, and Re-Usable: FAIR data principles

FAIR data principles:

- **F**indable
- Accessible
- Interoperable
- Re-usable

This is about (clinical) data and their role in translational biomedicine

This is also about the way we do science:

Iqbal, S. A., Wallach, J. D., Khoury, M. J., Schully, S. D., & Ioannidis, J. P. (2016). *Reproducible research practices and transparency across the biomedical literature*. *PLoS Biol*, *14*(1), e1002333.

innovative medicines initiative AETIC

To be Findable:

- F1. (meta)data are assigned a globally unique and eternally persistent identifier.
- F2. data are described with rich metadata.
- F3. (meta)data are registered or indexed in a searchable resource.
- F4. metadata specify the data identifier.

To be Accessible:

A1 (meta)data are <u>retrievable by their identifier</u> using <u>a standardized</u> <u>communications protocol.</u>

A1.1 the protocol is open, free, and universally implementable.

A1.2 the protocol allows for an authentication and authorization procedure,

where necessary.

A2 metadata are accessible, even when the data are no longer available.

🗾 Fraunhofer

To be Interoperable:

I1. (meta)data use a formal, accessible, shared, and broadly applicable

language for knowledge representation.

- I2. (meta)data use vocabularies that follow FAIR principles.
- I3. (meta)data include <u>qualified references</u> to other (meta)data.

To be Re-usable:

- R1. meta(data) have a plurality of accurate and relevant attributes.
- R1.1. (meta)data are released with a clear and accessible data usage license.
- R1.2. (meta)data are associated with their provenance.
- R1.3. (meta)data meet domain-relevant community standards.

Step 1: Building Resources

Ashutosh Malhotra Erfan Younesi Taking care of interoperability of data and knowledge: Shared Semantics

ADO: Alzheimer Disease Ontology

ADO: A disease ontology representing the domain knowledge specific to Alzheimer's disease

Ashutosh Malhotra^{a,b}, Erfan Younesi^{a,b}, Michaela Gündel^a, Bernd Müller^a, Michael T. Heneka^c, Martin Hofmann-Apitius^{a,b,*}

> ^aDepartment of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany ^bRheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn, Germany ^cDepartment of Neurology, Clinical Neurosciences Unit, University of Bonn, Bonn, Germany

AbstractBackground: Biomedical ontologies offer the capability to structure and represent domain-specific
knowledge semantically. Disease-specific ontologies can facilitate knowledge exchange across
multiple disciplines, and ontology-driven mining approaches can generate great value for modeling
disease mechanisms. However, in the case of neurodegenerative diseases such as Alzheimer's
disease, there is a lack of formal representation of the relevant knowledge domain.
Methods: Alzheimer's disease ontology (ADO) is constructed in accordance to the ontology
building life cycle. The Protégé OWL editor was used as a tool for building ADO in Ontology
Web Language format.
Results: ADO was developed with the purpose of containing information relevant to four main
biological views—preclinical, clinical, etiological, and molecular/cellular mechanisms—and was

Malhotra, A., Younesi, E., Gündel, M., Müller, B., Heneka, M. T., & Hofmann-Apitius, M. (2014). **ADO: A disease ontology representing the domain knowledge specific to Alzheimer's disease.** *Alzheimer's & dementia*, *10*(2), 238-246.

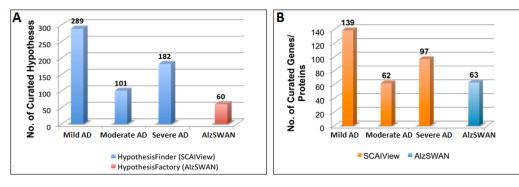
AETIO

PDON: Parkinson Disease Ontology integrating Mechanisms

Class hierarchy Class hierarchy (inferred)	Annotations Usage	
Class hierarchy: 'PARK6 mutation parkinsonism'	Annotations: 'PARK6 mutation parkinsonism'	
************************************	Annocations: PARKos mutation parkinsonism results or trin is study and the previously reported subclinical nigrostriatal dysfunction in carriers of heterozygous PINK1 mutations suggest the possibility that these heterozygous mutations are a significant risk factor in the development of later onset PD." p(HGNC:PINK1, sub(G,309,D)) -> path(MESHD."Parkinson Disease") ####################################	080
'ging etiology' emiological history'	synonyms	

Younesi, E., Malhotra, A., Gündel, M., Scordis, P., Page, M., Müller, B., ... & Hofmann-Apitius, M. (2015). **PDON: Parkinson's disease ontology for representation and modeling of the Parkinson's disease knowledge domain**. *Theoretical Biology and Medical Modelling*, *12*(1), 1.

et


innovative medicines initiative

Shared semantics for Neurodegeneration Research

14 🔹 🕺	Sunonum	080
▼ ● Thing	"Substantia nigra dopaminergic cell Nigral dopaminergic cell"	000
Domain_entity	reference	080
* Independent_entity	"http://neurolex.org/wiki/Category/Substantia_nigra_pars.compacta_dopaminergic_cell"	000
* • Nervous_system		0.04
▼	is DefinedBy	680
► ONOn-Neural	"Nigral dopaminergic cell is a neuron found in the midbrain of vertebrates. These neurons comprise most of the substantia nigra and mainly regulate motor and sensorimotor functions within the brain.	
▼ ⊖Regional_part_of_nervous_system	and manny regulate motor and sensormotor functions within the brain.	
T-OPeripheral_nervous_system		
Ganglion_part_of_peripheral_nervous_system	Descrption:	
Overve_part_of_peripheral_nervous_system	Soma Location: Substantia nigra pars compacta	
eautonomatic	Spine density on dendrites: A spin/ Dendrite Quality	
rentral_nervous_system		
• Brain	Axon Specific Properties	
Ancillary_structures	Axon projection laterality. ipsilateral Location of axon arborization: Neostriatum	
★ ⊖ Regional_part_of_brain	Cellular synaphic target: Neostriatum medium spiny neuron	
► OCA3_alveus	Neurotransmitter: Dopamine	
CA3_alveus		
► ⊖ Chemoarchitectural_part	Description: Substantia_nigra_pars_compacta_dopaminergic_cell	0
Ocomposite_part_spanning_multiple_base_regional_parts_of_brain	Equivalent classes 🕥	
►		
► OPiriform_cortex_layer_1	Superclasses 🕤	
OPiriform_cortex_layer_2	GSubstantia_nigra_pars_compacta	680
Regional_part_of_forebrain		
GRegional_part_of_hindbrain	Inferred anonymous superclasses	
Regional_part_of_midbrain	has_part_some_Substantia_nigra_pars_compacta	68
Part_of_cerebral_peduncle	has_part some Substantia_nigra_pars_reticulata	080
Regional_part_of_midbrain_tegmentum		000
Predominantly_gray_regional_part_of_substantia_nigra	has_part some CA3_alveus	
v - Substantia_nigra_pars_compacta	has_part some Piriform_cortex_layer_1	08
Substantia_nigra_pars_compacta_dopaminergic_cell	has_part some Neocortex_layer_4	680
▼-© Substantia_nigra_pars_reticulata	has_part some Chemoarchitectural_part	680
Substania_nigra_pars_reticulata_interneuorn_GABA Substantia_nigra_pars_reticulata_principal_cell	has_part some CA1_alveus	680
	has_part_some_CA3_stratum_lucidum	68
- einterpeduncular_fossa	has_part some Hindbrain	68
oculomotor_nerve ventrolateral fissure of midbrain	has_part some Piriform_cortex_layer_2	68
► ⊖Regional_part_of_midbrain_tectum	has_part some Aggregate_regional_part_of_brain	080
anterior_cerebellar_incisure	has_part_some_Regional_part_of_forebrain	080
erebrocerebellar_fissure	has_part some Molecular_layer_of_dorsal_cochlear_nucleus	080
interpeduncular_cistern	has_part some Trigeminal_nucleus	080
superior_pontine_sulcus	has part some Regional part of midbrain	08
Spinal_Cord	has_part some Composite_part_spanning_multiple_base_regional_parts_of_brain	08
▶ <mark>●</mark> meninges	has_part some Composite_part_spanning_multiple_base_regional_parts_or_brain has_part some Regional_part_of_hindbrain	68
	The same regional_part_or_nindorain	901

Human Physiology Simulation **Ontology (HUPSON)** (Gündel et al., 2013) Brain Region and Cell-Type Terminology (BRCT) (unpublished) Clinical Trial Ontology (NDD-CTO) (unpublished) Alzheimer Disease Ontology (ADO) (Malhotra et al., 2013) Parkinson Disease Ontology (PDON) (Younesi et al., 2015) Multiple Sclerosis Ontology (MSO) (Malhotra et al., 2015) **Biomarker Terminology** (Younesi et al., 2012) Hypothesis Finder (Malhotra et al., 2013) Pathway Terminology System (Iyappan et al., 2016)

PTSD Terminology (Kodamullil et al., in preparation)

Usage of Ontologies / Terminologies in Text Mining Services

8. Long-term efficacy and safety of donepezil in the treatment of Alzheimer's disease: final analysis of a US multicentre open-label study.

PubMed PubMedCentral 10793322 **Authors:** Rogers, S L; Doody, R S; Pratt, R D; Ieni, J R **Date:** 2000-05 **Journal:** European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology **SciMago: Affiliation:** Eisai Co. Ltd., 6-10 Koishikawa 4 chrome, Bunkyo-ku, Tokyo, Japan.

This multicentre, open-label study evaluated the long-term efficacy and safety of donepezil in the treatment of patients with mild to moderately severe Alzheimer's disease (AD). The 133 patients who entered the study had previously completed a 14-week randomized, double-blind, placebo-controlled study with donepezil. In this open-label study, patients were treated initially with 3 mg per day donepezil, which could be increased to 5, 7 and 10 mg per day in a step-wise fashion. Patients attended the clinic for assessments at 3-week intervals for the first 12 weeks, then subsequently at 12-week intervals for up to 240 weeks (254 cumulative weeks). Efficacy was assessed using the Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) and the Clinical Dementia Rating-Sum of the Boxes scale (CDR-SB), and data were compared with those predicted for historical untreated AD patients. During the first 6-9 months of the study, mean ADAS-cog and CDR-SB scores showed evidence of clinical improvement from baseline. After this time scores gradually deteriorated. Overall the decline was less than that estimated if this cohort of patients had not been treated. The most common adverse events were related to the nervous and digestive systems, and were generally mild and transient, resolving without the need for dose modifications. There was no evidence of hepatotoxicity. In conclusion, these data demonstrate that donepezil is a well-tolerated, realistic symptomatic treatment for AD over a period of up to 4.9 years. An interim report of the first 98 weeks of the study has been published previously.

MeSH: Aged; Aged, 80 and over; Aged; Neuropsychological Tests;

^{80 and over;} 1. Altered expression of zinc transporters-4 and -6 in mild cognitive impairment, early and Title and Me late Alzheimer's disease brain.

PubMed 16580781 Authors: Smith, J L; Xiong, S; Markesbery, W R; Lovell, M A Date: 2006-07- Journal: Neuroscience Affiliation: Department of Chemistry, University of Kentucky, Lexington, KY 40536, USA.

□ Statistics □ Select ID with comment:

BRCO + ADO terminology markup

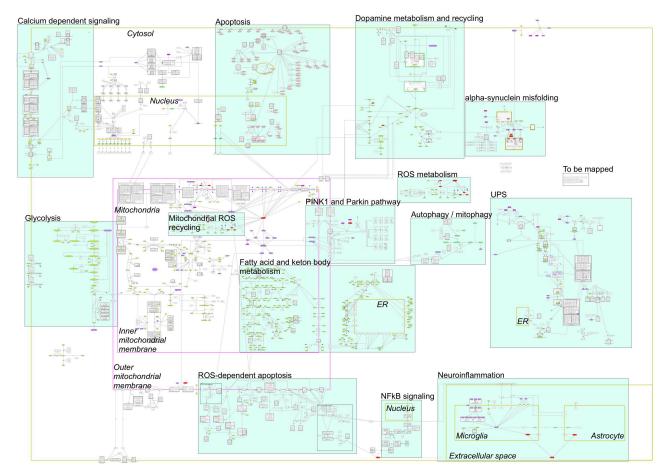
Accumulating evidence suggests that a disruption of zinc (Zn) homeostasis may play a role in the pathogenesis of Alzheimer's disease. Although several Zn transporter proteins responsible for the regulation of Zn balance are present in the brain, there has been little study of these proteins in Alzheimer's disease. To determine if alterations of Zn transporter proteins exist, levels of Zn transporter-4, which functions to remove Zn from the cytoplasm to endosomal/lysosomal compartments, and Zn transporter-6, which allocates cytoplasmic Zn to the trans-Golgi network, were measured in the hippocampus/parahippocampal gyrus, superior and middle temporal gyrus, and cerebellum of subjects with mild cognitive impairment, early Alzheimer's disease, late stage Alzheimer's disease, and age-matched controls using Western blot analysis and protein specific antibodies. Our results show that Zn transporter-4 and Zn transporter-6 are significantly (P<0.05) increased in hippocampus/parahippocampal gyrus of early Alzheimer's disease subjects. Zn transporter-6 is also increased (P<0.1) in the superior and middle temporal gyrus of early and Alzheimer's disease subjects. Zn transporter-6 is also increased (P<0.1) in the superior and middle temporal gyrus of early brain.

NDD-CTO

markup

terminology

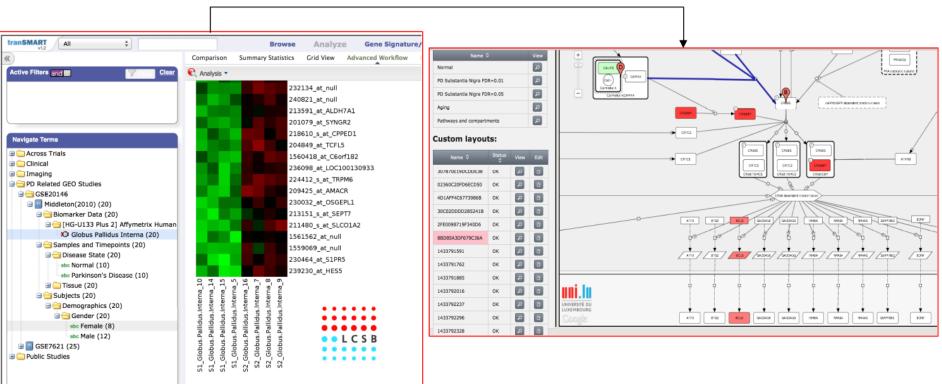
Alpha Tom Kodamullil Stephan Gebel Generating Models of Disease: A Plurality of Modeling Approaches



"PD map" SBML model representing essential processes and pathways in Parkinson's Disease (generated by partner LCSB)

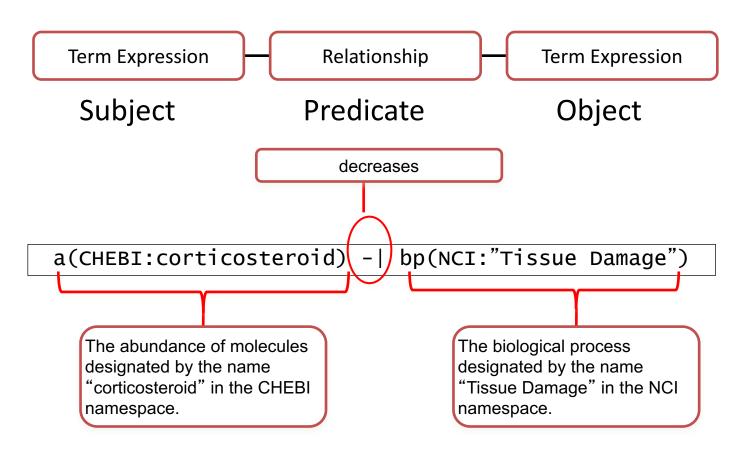
http://pdmap.uni.lu/pd_map/

Fujita, Kazuhiro A., et al. "Integrating pathways of Parkinson's disease in a molecular interaction map." *Molecular neurobiology* 49.1 (2014): 88-102.

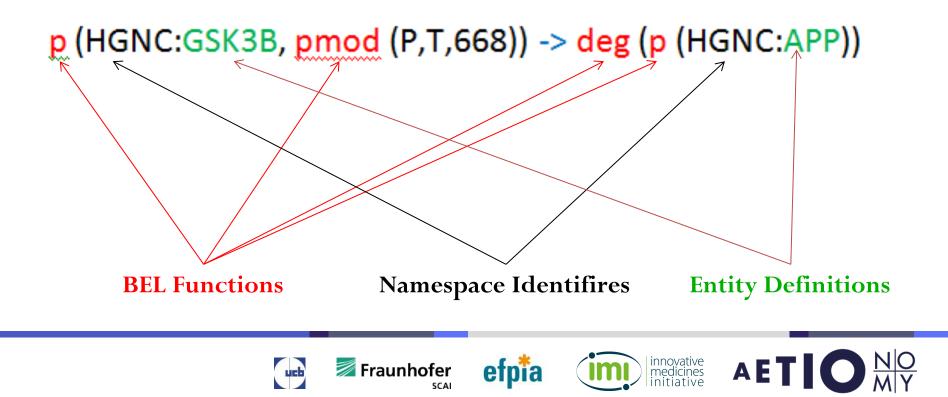

innovative medicines initiative

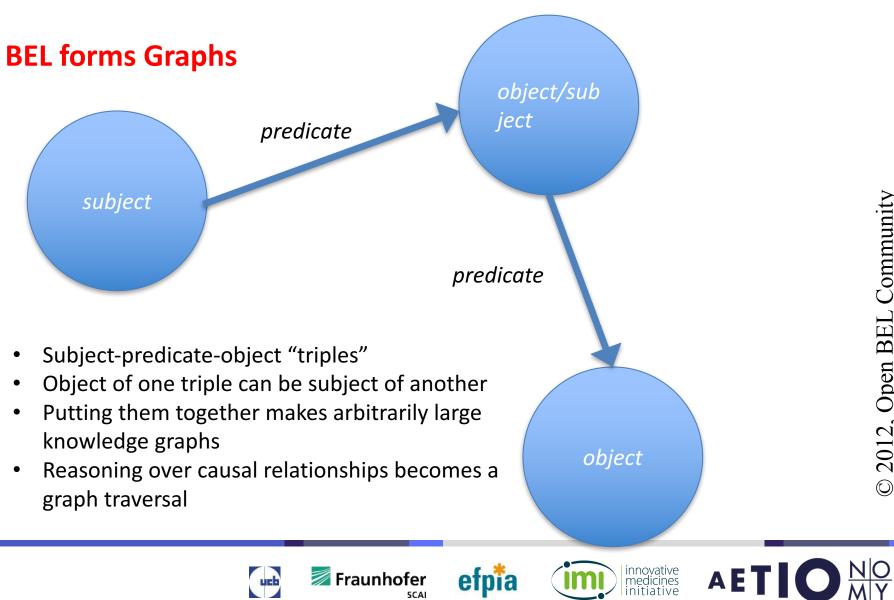
Overlay Marker Selection Results to PD Map

Marker selection from GSE20146


e

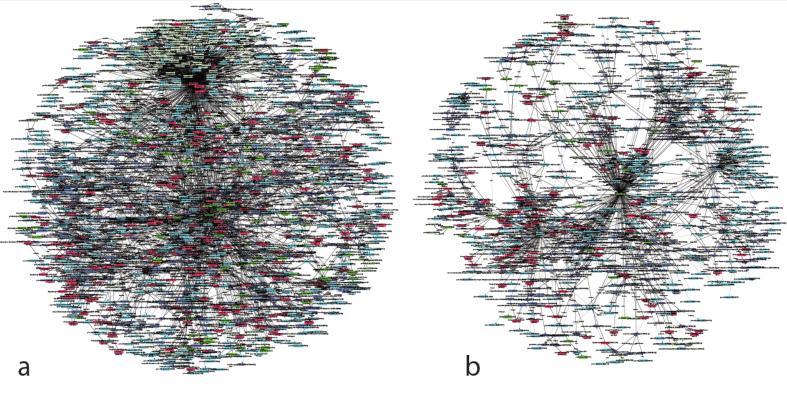
Capturing Knowledge on Causes and Effects: OpenBEL





OpenBEL: Capturing of Knowledge and "encoding" of data

Phosphorylation of **glycogen synthase kinase 3beta** at **Threonine**, 668 **increases** the **degradation** of **Amyloid precursor protein**.



Model-driven Integration of Data- and Knowledge in AD

diseased

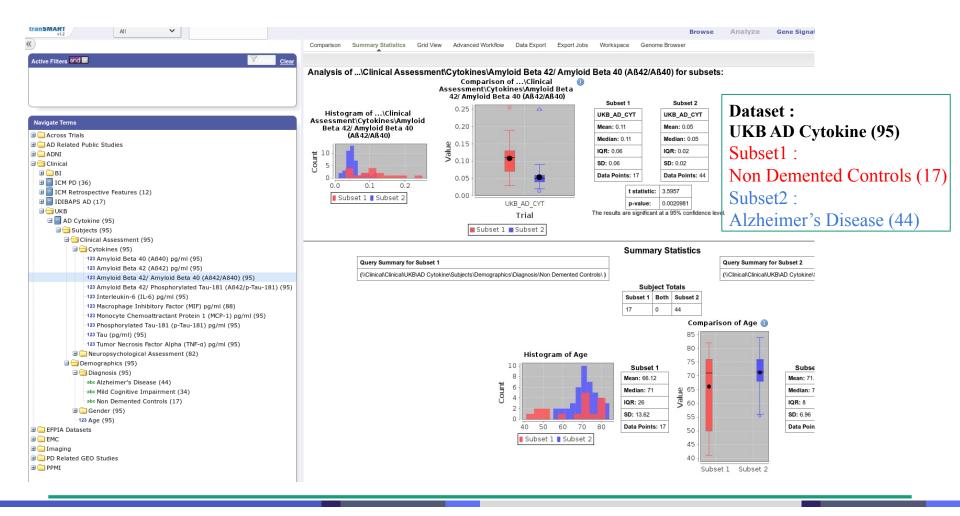
normal

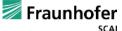
Kodamullil, A. T., Younesi, E., Naz, M., Bagewadi, S., & Hofmann-Apitius, M. (2015). **Computable cause-and-effect models of healthy and Alzheimer's disease states and their mechanistic differential analysis**. *Alzheimer's & Dementia*, *11*(11), 1329-1339.

Christian Ebeling

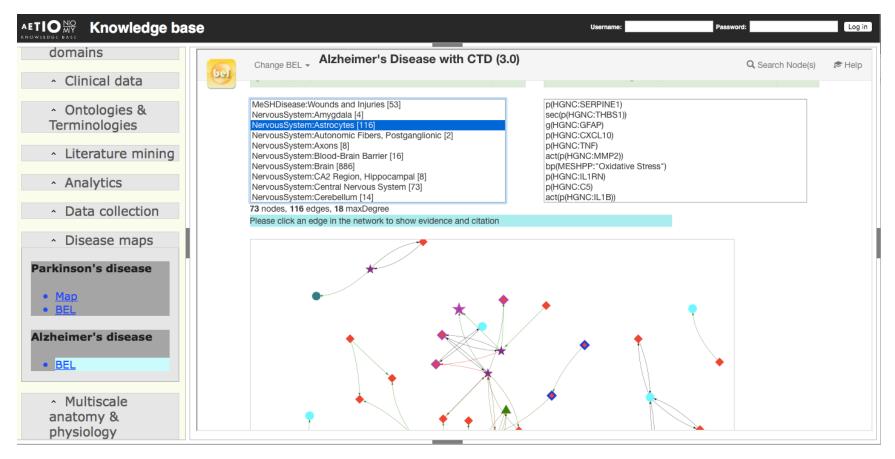
ng Aishwarya Alex

The AETIONOMY Knowledge Base





tranSMART : Summary Statistics for Selected Cohorts


AETIO MO MY

innovative medicines

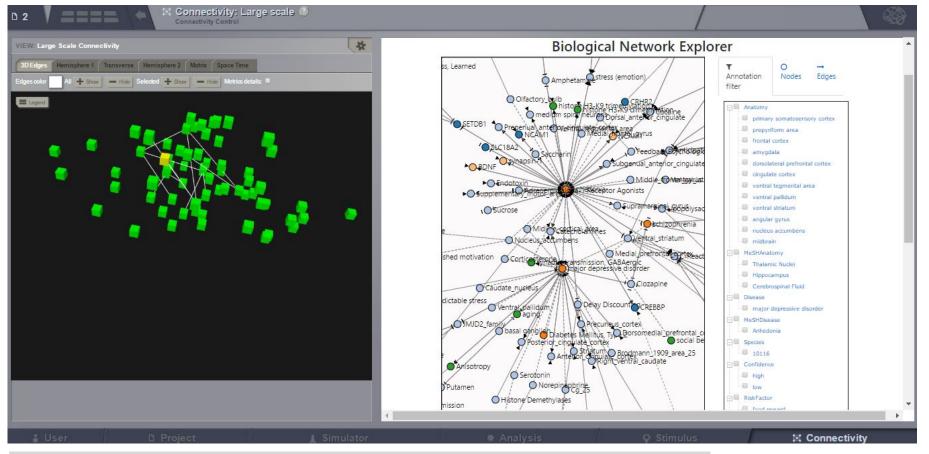
initiative

AETIONOMY KB (non-tranSMART portion): Model Explorer

http://aetionomy.scai.fhg.de

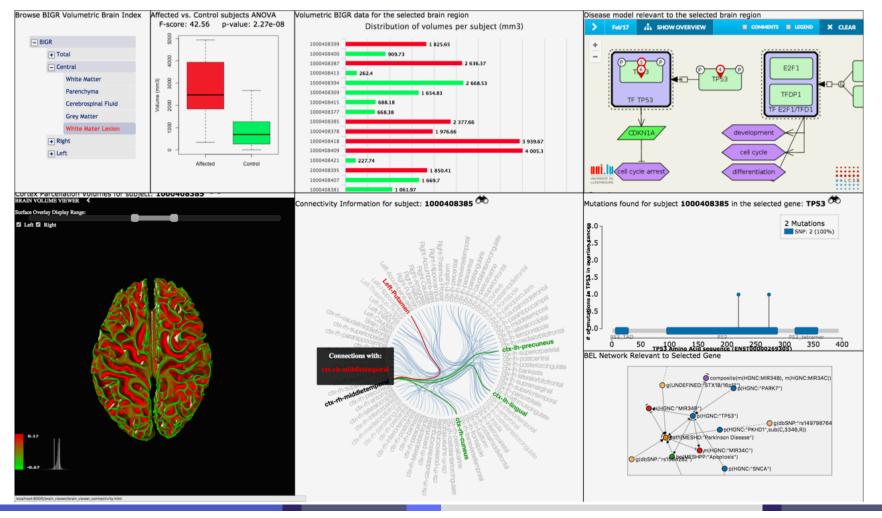
innovative medicines

initiative



Mapping Models into the "The Virtual Brain" (TVB)

Work of Aliaksandr Masny, Asif Emon and Daniel Domingo-Fernandez


innovative medicines

initiative

Integrated Information System for Translational Neuroscience

e1

Step 2: Making Use of the Resources

Anandhi Iyappan

Alpha Kodamullil

Shweta Bagewadi

Erfan Younesi

Reverse Causal Reasoning (RCR; Catlett et al., 2013)

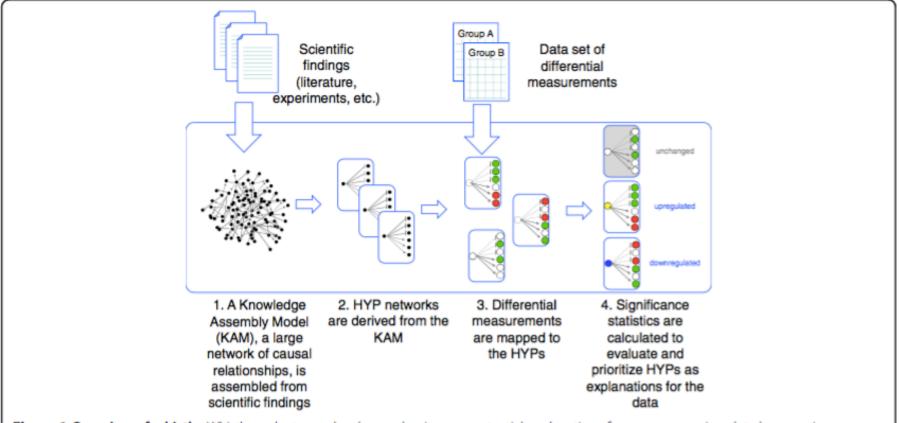
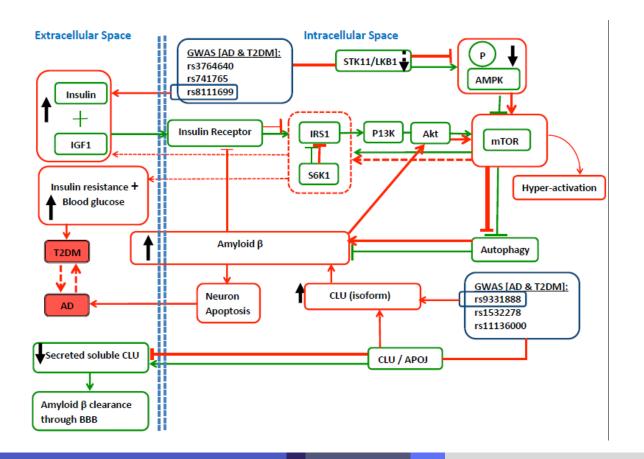


Figure 1 Overview of whistle. Whistle evaluates molecular mechanisms as potential explanations for gene expression data by mapping measurements and differentially expressed genes to a directed network of prior scientific knowledge.

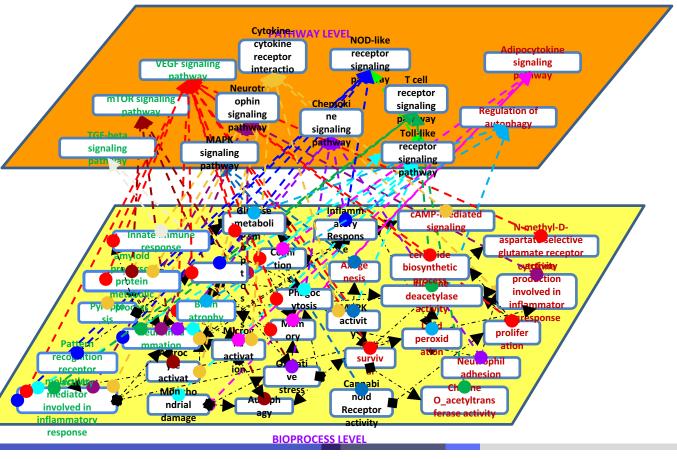


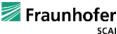
A Mechanistic Link between AD and T2DM

Mining of co-morbidity information results in the second mechanismhypothesis generated in **AETIONOMY:** a possible link between insulin receptor pathway, mTOR-induced autophagy and APP peptide clearance Supportive evidence from SNPs that are shared by AD and T2DM

🜌 Fraunhofer

SCAL




Comparative Modeling of Neuroinflammation in Mice and Men

Kodamullil, A. T., et al., submitted

Separate modeling of causes-and-effects in neuroinflammation in mice and men reveals insight into the functional repertoire and the functional equivalence of rodent models. Our findings put a question mark behind the extensive usage of mouse models for neuroinflammation studies.

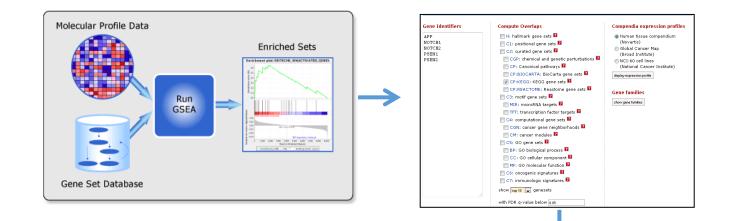
e1

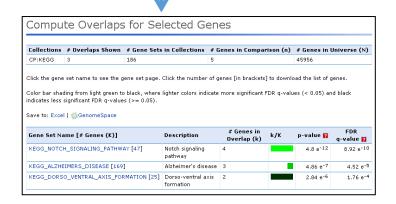
Christian Ebeling

Daniel Domingo-Fernandez

Alpha T. Kodamullil

NeuroMMSigDB – a server for mechanismenrichment




An Adaptation of GSEA / MSigDB: Mechanism Enrichment Server

We have adapted the strategy underlying **GSEA / MSigDB**

(developed by the Broad Institute http://www.broadinstitute.org/gsea/msigdb/index.jsp)

for the area of dementia research.

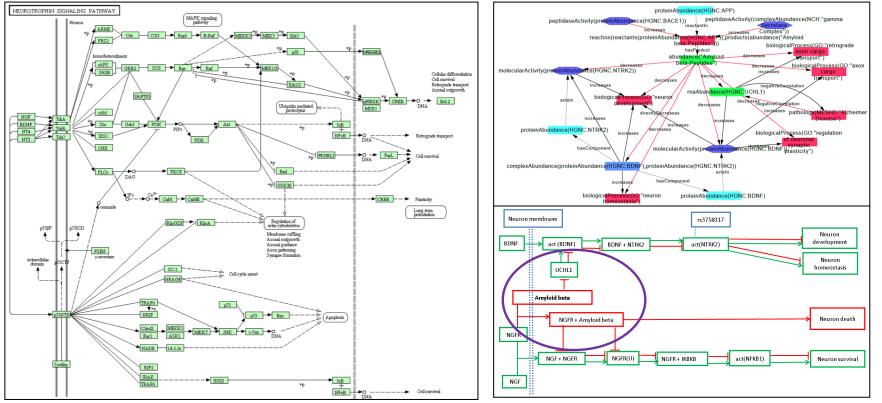
NeuroMMSig DB Server is different from GSEA / MSigDB

Molecular Profiles are highly specific for Neurodegenerative Diseases: the "profiles" or "signatures" in NeuroMMSigDB are graph models representing pathophysiology context

NeuroMMSigDB entries are Multimodal: Multiple entity types constitute knowledge based mechanistic models. They contain genes, proteins, chemicals, ions, drugs, SNPs, epigenetics, imaging features, cognitive tests, clinical data, etc.

Mechanisms are not pathways: canonical pathways (KEGG, REACTOME etc) are usually not disease specific. Pathways representing "how stuff works" in a a general way, pathways are **not disease mechanisms**. Dysregulation of pathways may be a disease mechanism. Examples:

- According to KEGG, there are only 10 pathways under NervousSystem
- Not all genes and relationships described in one canonical pathway *may or may not be involving as same as* in a disease specific mechanism or *some genes are irrelevant* to disease context.

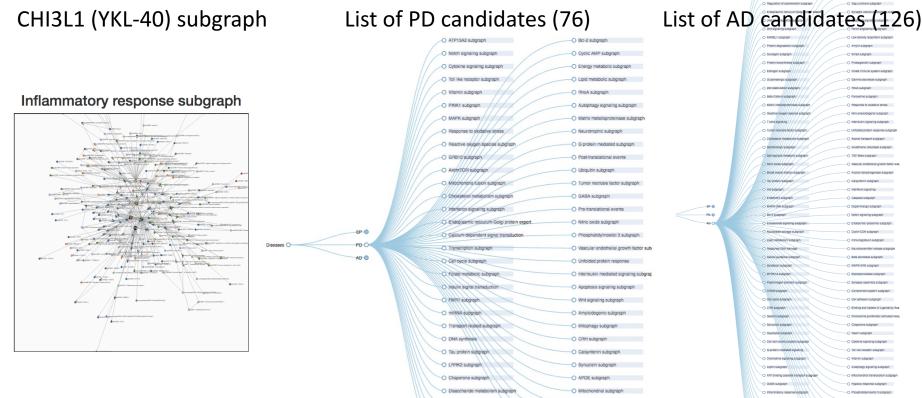


Canonical Pathways are NOT Disease Mechanisms

Canonical Pathway

Cause and effects of an entity from BEL mechanistic model

innovative medicines initiative AETIONY



NeuroMMSigDB – the mechanism-inventory

Regulation of cytoskeleton

O Mitochondria fission subgraph

Domingo-Fernandez et al., submitted

o Bestimerge subgraph o Instelliminure system subgraph o Estrogen subgraph o Estrogen subgraph

Subgraph example and tree representations of candidate mechanisms

efpia

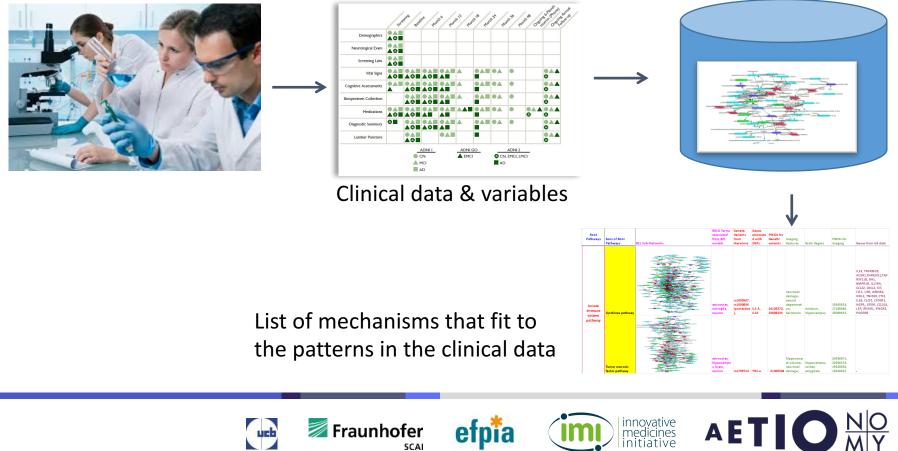
O Caspase subgraph

Nuclear factor Kappa beta subgrap

AETIO MOY

Current Design of the NeuroMMSigDB Mechanism Inventory

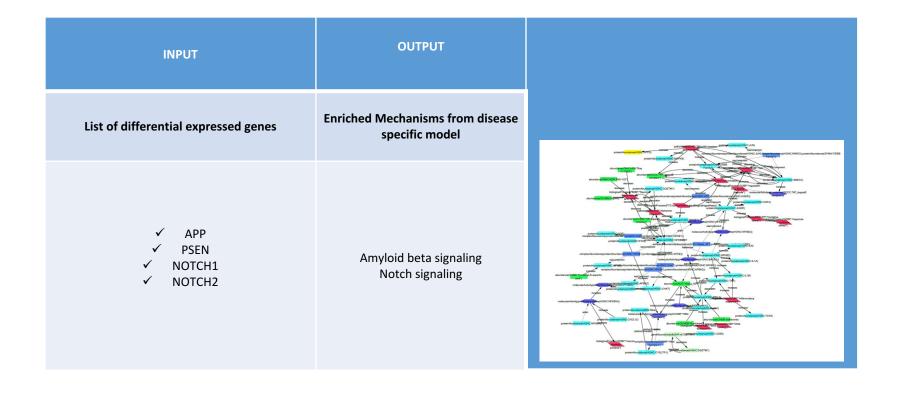
Root Pathways	Sons of Root Pathways	BEL Sub-Networks	BRCO Terms associated from BEL models	Genetic Variants from literature	Genes associate d with SNPs	PMIDs for Genetic variants	lmaging Features	Brain Region	PMIDs for imaging	Genes from GE data
Innate immune system pathway	Cytokines pathway		astrocytes, microglia, neuron	rs1800587, rs1800896 (protective),	IL1-A, IL10	24103372, 23838435	neuronal damage, axonal degenerati on, Serotonin	striatum, hippocampus,	15465624, 17189680, 25069615,	IL13, TNFRSF25, ACVR1,TNFRSF21,TNF RSF11B, GH1, BMPR1B, IL17RA, CCL22, CXCL2, KIT, FLT1, LIFR, AMHR2, IFNL2, TNFSF8, CTF1 IL1B, CLCF1, CX3CR1, NGFR,, EPOR, CCL3L3, LEP, IFNAR1, IFNGR1, PDGFRB
	Tumor necrosis factor pathway		astrocytes, hippocampu s, brain, neuron	rs1799724	TNF-a	21509504	hippocamp al volume, neuronal damage,	hippocampus, cortex, amygdala	24938671, 22666474, 19320056, 15626822	-



NeuroMMSigDB: Multimodal, Multiscale Mechanism Enrichment

NeuroMMSigDB Server

efpia



🖉 Fraunhofer

SCAI

Use Case Scenarios for Mechanism-Enrichment: Genes

Use Case Scenarios for Mechanism-Enrichment: Genetics

INPUT	Ουτρυτ									
List of SNPs from a disease subgroup	Associated genes	Enriched Mechanisms								
rs12769316, rs1056890, rs11160707, rs1799724	NFKB2, TNF	Nuclear factor kappa signaling, Tumour Necrosis Factor signaling	protective and and a set of the s							

AETIOMY

Ranking of Candidate Mechanisms

1. Map gene expression values (different stages of the disease) to BEL networks

2. Devise a scoring function

- Apply Network Perturbation Amplitude (NPA) algorithm (*see the work of Florian Martin, Julia Hoeng, and Manuel Peitsch on that method*)
- Calculate score for dysfunctional mechanism(s) for different stages
 - Score = $\frac{1}{N} \sum_{i=1}^{N} S_i \cdot \beta_i$

where ß is log₂ fold change S is the sign (+1 for increase, -1 for decrease) N is the no. of downstream nodes

• Rank mechanisms based on the score

Ranking of Candidate Mechanisms part II

Represent clinical data in Bayesian dependency graphs

Devise a scoring function

Systematically test subgraphs in the conditional dependency graph for their concordance with BEL-encoded cause-and-effect graphs

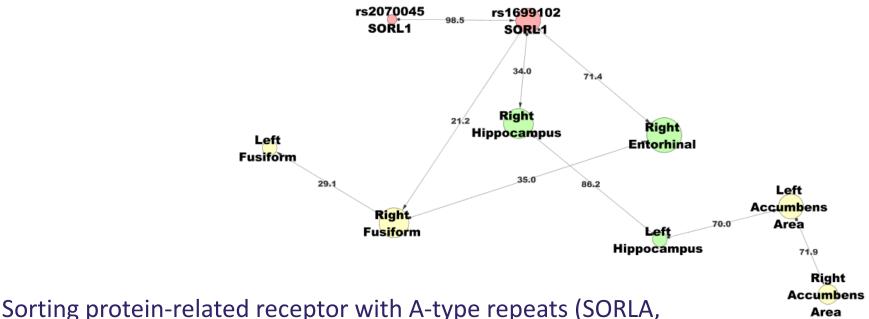
Score each individual triple match

Score each individual directionality match

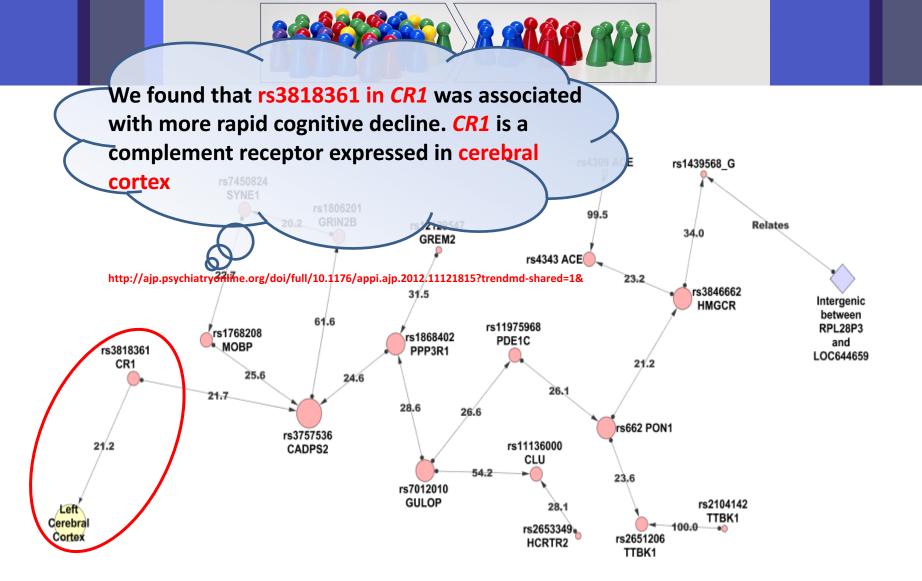
Flag concordance / discordance areas

Conditional Dependency Graph representing Patient Level data: Bayesian Network learned from ADNI

Work of Shashank Khanna (Fraunhofer) Supported by Prof. Holger Fröhlich (UCB)



Bayesian Network links SNPs to Brain Regions



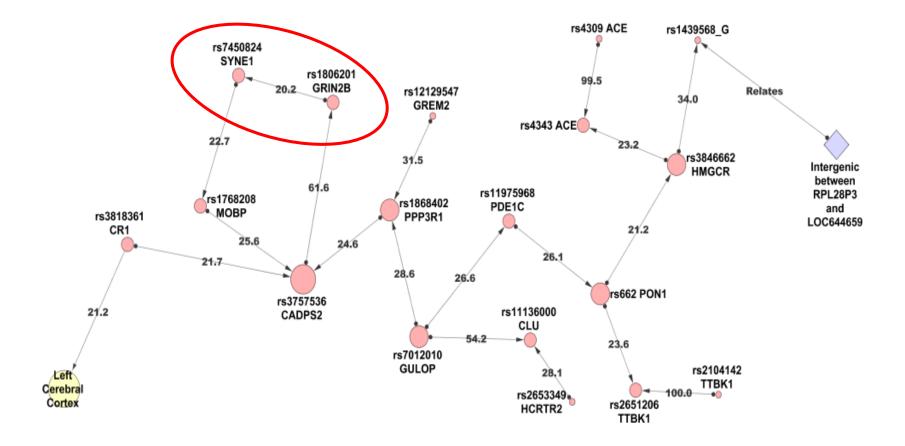
also known as LR11) is a type 1 membrane protein highly expressed in neurons of the cortex, hippocampus, and cerebellum.^{1,2}

Genetic data and protein levels revealed that two SNPs in SORL1, rs2070045 and rs1699102, are associated with reduced SORLA expression levels in the brain

[http://jamanetwork.com/journals/jameneurology/fullarticle/1108012 innovative Fraunhofer epia AETIO NO

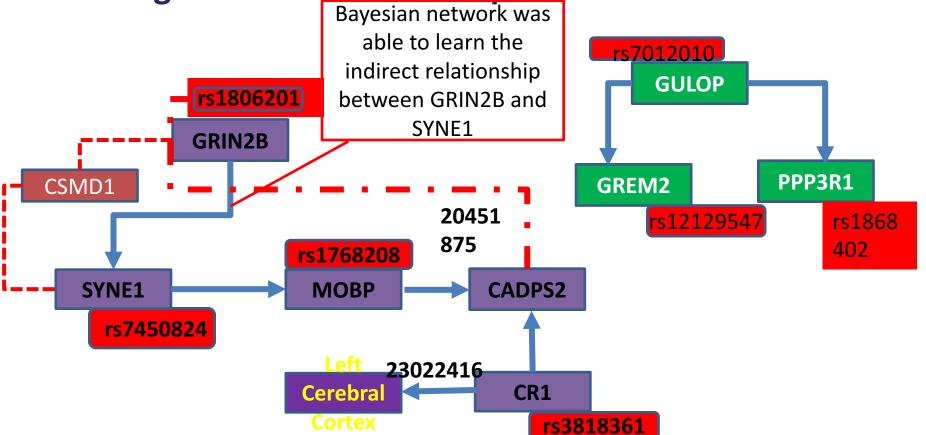
A big <u>SNP-SNP interaction network</u> is seen. CR1 gene related to SNP rs3818361 has some literature talking about cognitive decline.

SCAL



51

A link between GRIN2B and SYNE1 is shown by the BN.


efpia

SCAI

AETIO MO MY

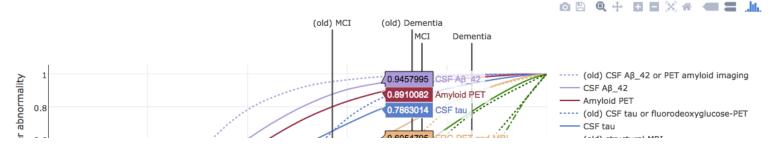
"Learning" indirect relationships from data

From literature we get to know that <u>GRIN2B is connected to CSMD1</u>; CSMD1 is regulating the expression of gene <u>SYNE1</u> btw: This would be represented in a BEL model. Since we did not have any SNP related to CSMD1 in our data, therefore this link was generated by the BN but the indirect link between GRIN2B and SYNE1 was created.

Marc Jacobs Sven Hodapp Meemansa Sood

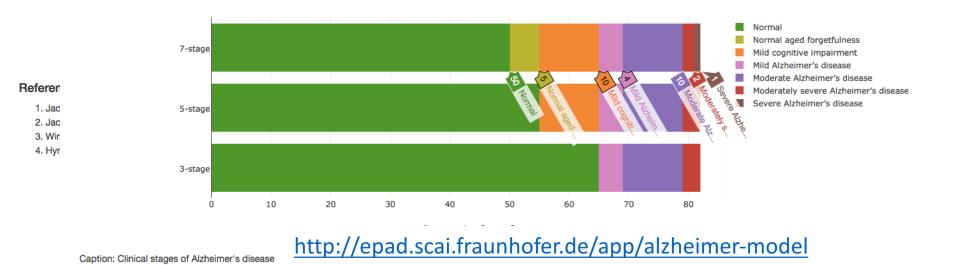
for the EPAD consortium

Temporal and Spatial Representation of Simulated Patients: Virtual Dementia Cohort


EPAD Longitudinal Study Viewer

🖉 Fraunhofer 🛛 💡 👻 🚿 👻

app/alzheimer-model


5

Hypothetical longitudinal standard model for Alzheimer's disease

Clinical stages of Alzheimer's disease

🙆 🖹 🔍 🕂 🖬 🖬 🗶 🚸 📟 🚍 🚛

Extraction from Tables

www.ep-ad.org

Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study

	Healthy controls (n=145)	Mild cognitive impairment (n=36)	p value*	Alzheimer's disease (n=19)	p value*
Age, years	71-3 (7-1)	74-6 (6-5)	0-012	69-8 (9-4)	0-49
Male sex	74 (51%)	20 (56%)	0.71	10 (53%)	1.00
MMSE	28-9 (1-1)	27-3 (2-1)	<0.0001	22.0 (2.9)	<0.0001
CDR-SOB	0.06 (0.3)	1.03 (0.7)	<0.0001	3.84 (1.1)	<0.0001
Positive for APOE ε4	58 (40%)	20 (58%)	0-037	12 (63%)	0-047
Years of education	13.6 (3.7)	13-0 (3-8)	0.36	12-6 (3-8)	0-28
Episodic memory composite score	-0.23 (0.88)	-2.10 (0.91)	<0.0001	-3.21 (0.6)	<0.0001
Non-memory composite score	-0.15 (0.65)	-0.77 (0.80)	<0.0001	-2.46 (1.19)	<0.0001
Grey matter volume (cm²)†	349 (15)	339 (16)	0-0012	326 (23)	0-0008
Hippocampal volume (cm ³)†	4.18 (0.30)	3.76 (0.60)	0-005	3.92 (0.37)	0-014
Amyloid β burden (SUVR)	1-38 (0-39)	1.94 (0.64)	<0.0001	2.27 (0.43)	<0.0001
High ¹¹ C-PiB retention	38 (26)%	24 (67%)	<0.0001	18 (95%)	<0.0001

Data are mean (SD) or number (%) unless otherwise stated. MMSE=mini-mental state examination. CDR-SOB=clinical dementia rating scale sum of boxes. APOE=apolipoprotein E. SUVR=standard uptake value ratio.¹¹C-PiB=Carbon-11-labelled Pittsburgh compound B. *Compared with healthy controls. †Grey matter and hippocampal volumes normalised to intracranial volume.

Table 1: Characteristics of the study cohort

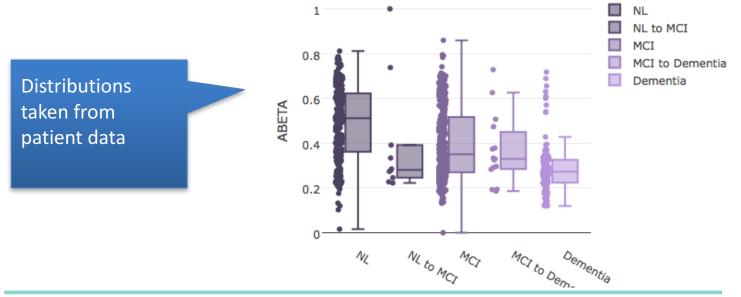
https://www.ncbi.nlm.nih.gov/pubmed/23477989

Generation of a Virtual Cohort

www.ep-ad.org

1	Male Age sex 75 M	MMSE	CDR-SOB		education		memory composite score	Grey matter volume (cm3) [†] 354,847	Hippoca mpal volume (cm3)†	Amyloid β burden (SUVR)	retentio n DX		Samplin distribu taken fr	tions	
2	75 M	20	'			-,		348,312	,				114		
2	82 M	29	'			,	,	335,034	,	,			literatur	e	
2 2	64 M	30					,	351,737	,						
5	59 M	29				-,		355,043		,					
6	74 M	28	,			,	,	318,458	,	,					
7	64 M	28	'						, .)=.,	_,					
8	65 M	27				,									
9	74 M	29	-0,109	1	19	0,570					IV	IMSE v	s Age		
10	73 M	29	0,171	1	14	0,431	-0,352	358							
11	82 M	30	0,373	1	13	0,985	-0,159	₃₃₇ 32							
12	67 M	29	0,600	1	14	0,167	,	345 30							
13	74 M	29	0,356	1	13	-0,520	-0,049	^{32/} 28							
14	70 M	27	0,043	1	17	-0,830					-				
15	62 M	29	-0,039	1	5	1,828		344			•				
16	75 M	29	-0,386	1	18	1,376		356 24							
17	72 M	30	0,194	1	18	0,394		346 22			• •				
18	61 M	30	-,			,		³⁵⁷ 20			•				
19	69 M	29	.,	1	12		,	18			-				
20	67 M	30	,			,		384			•	•	-		
21	71 M	28	.,					. ₃₅ ∠ 16							
22	75 M	30	,			,		342 14							
23	68 M	28	- /			,		³⁷² 12		1	1	1	1	1	
24	69 M	29	.,			-,	,		40	50	60	70	80	90	100
25	71 M	30	-0,097	1	13	1,732	-0,092	344	-	'					

Task: Correlating Biomarkers to Disease Stages


www.ep-ad.org

ADNI data

Document Header (ISO 690 style)

Meemansa, Sven, Marc. Fraunhofer SCAI: ADNI Plot Experiment 1 2016 n/a.

https://api.scaiview.com/§§:header/adni.experiment1

The Virtual Dementia Cohort

As never seen before:

- Here should have been the Virtual Dementia Cohort video -

The People and the Institutions behind the Project

