Active pharmacovigilance using BCPNN-based machine-learning

Douglas McNair MD PhD

Engineering Fellow & President, Cerner Math Inc

Motivation

Detect safety signals (negative events, sequences, processes)

- With greater sensitivity and specificity than prior art methods
- With faster time-to-detection than is possible with "spontaneous adverse drug report" regulatory agency systems

Affordably, continuously, automatically, scalably, sustainably

• Using large observational de-identified, confidentiality-protected, privacycompliant EHR-derived datawarehouse

With appropriate False Discovery Rate (FDR) control

Cerner at a Glance

- Founded in 1979, based in Kansas City
- Publicly traded since 1986
- Largest standalone health care IT company in world
 - ~10,000 facilities around the world
 - Comprehensive suite of health care solutions & services
 - Contemporary, scalable architecture and cloud platform
- **2012** Revenues of \$2.7B
- **13,500 Associates Worldwide**
 - ~6,000 in Professional / Managed Services
 - Over 2,500 in Engineering / Intellectual Property

Cerner Global Presence

Total Patient and Episodes

Patient Type	Patients	Encounters		
Inpatient	9,453,000	12,033,000		
Emergency	20,150,000	27,713,000		
Outpatient	70,980,000	190,323,000		

Total Clinical Data Elements

Туре	Items
Medication Orders	303,856,000
Lab Results	5,022,000,000
Flowsheet items	1,109,000,000

Pharmacovigilance prior art has limitations...

- Human beings' finite attention spans and fragmented scope of responsibility and authority with regard to noticing and comprehending the exposures and outcomes to submit ADRs
- Multiple variables and multiple events and outcomes too complex for humans to notice and understand, especially in context of older, sicker patient pop (w/ many comorbid factors)
- Some [undetected] patterns arise longitudinally, outside the range of any one clinician's oversight
- Submitters receive no compensation for reporting, which leads to significant under-reporting and sparsity of ADR submissions [hence, no signal to detect]
- Humans perceive substantial medical malpractice or other risk that would be incurred were they to undertake to report an event, which makes them less likely to report

More limitations of prior art...

- Some safety event types arise with such low frequency that, although serious or life-threatening, it is improbable that any one practitioner would encounter even one of them during their practice lifetime
 J disposition to regard them as 'incidental' or idiosyncratic/random events and not report them
- Neglect longitudinal patient-level information are neglected, often omitted from regulatory agencies' spontaneous reporting forms
 Only event-level information is captured
- Seriousness of AEs and ADRs is recorded on reporting forms and electronic file formats at the "case" level and not at the "event" level
 inability to discriminate 'serious' from 'non-serious' adverse events... pooling these together dilutes all signals [under-detection]
- Excessive false-negative (Type II) involving serious adverse events and false-positive (Type I) errors involving non-serious and/or incidental adverse events
 - Simple PRR > 2.0 gives false-discovery rate (FDR) > 2%

Yet more limitations of prior art...

- If there is a physiologic mechanism whereby an agent causes an outcome, one expects to find a quantitative dose-response relationship in the data
 - ↑ exposures are associated → ↑ frequent, severe, long-lasting, irreversible outcomes or death
- Unable to discern differences among different strengths or mg/kg dosages or particular dosage-forms or routes of administration
 - coarse, binomial "exposed"/"not-exposed" status
- Lack detailed date-timestamped minute-wise timing of when medicationadministration exposures occurred and when any events materialized
 - only able to ascertain is simple statistical 'association', not causality

Do not record excursions when physicians modify patients' orders over time

- dose-range adjustment of the dose or concomitant medications over a subsequent period of time
- discontinuation of therapy ("de-challenge")
- re-prescribing of the drug again over a period of time ("re-challenge")
- fail to take advantage of this naturally-occurring causality evidence

Poor sensitivity and low PPV due to low prevalence of AEs and Rx_AE pairs

Cerner Datamining EHR PV Process

Select important safety 'contexts' in data warehouse

- Usually these involve one or more specific conditions, diagnoses, or therapies, or sequences of interventions (protocols, care plans)
- May involve specific gender, age, race, venue, role, genomic biomarker or other attributes

Extract records for the target group, for all exposures

- Identify prevalent comorbid diagnoses and other attributes in this pop
- Identify frequent association-sets of concomitant meds and procedures
- Extract records for attribute-matched comparator group(s)
- Assemble counts of outcome events, for all event-types
- Enrich with first-pass BCPNN to overall AE prevalence > 5%
- **Compute BCPNN, MGPS p-values**
- Compute FDR rates for each statistically significant "exposure(s)-event" pairs/triples, to control Type I error rate

Cerner Datamining EHR PV Features

- Context-sensitive able to identify safety signals that only arise in subset of overall populations exposed to the therapeutic product or procedure
- Sensitive able to detect second- or higher-order patterns of multiple variables that would not be noticeable to human observers
- Accurate FDR and FNR control, to minimize false-positive (Type I) and false-negative (Type II) errors
- Independently validatable signals detected can be confirmed by rerunning the analysis on separate cohorts of EMR-derived records
- Longitudinal can be used to track the effectiveness of label-change or training or other measures that are undertaken to mitigate risks
- Causality can use "challenge-dechallenge-rechallenge" and longitudinal sequence of information to establish causal relationship between exposure and event
- Performance / Scalability sustainable with millions of "exposureevent" pairs

Cerner Parallelized Active PV System

Example: Drug safety data mining in AMI in-patients

- AMI patients typically have multiple pre-existing comorbid conditions that must receive treatment during the AMI episode, plus any medications associated with PCI/CABG, hospital-acquired pneumonia or other infectious complication subsequent to coronary revascularization procedure
- More than 300 instantiated single-med and multi-med regimens with N > 20
- Lots of diabetes, hypertension, depression, lots of other prevalent conditions
- Misc. conditions that are not all that uncommon (epilepsy, gout, arthritis, etc.)
- Many patients receive more than 10 ADME-concomitant medications during hospital admission for AMI (context-specific "polypharmacy")
- Extracted 6,699 patients with 'complete' data from Health Facts® with EKGproven AMI coded as ICD-9 410.xx ... restricting to relatively healthy population between 35 and 60 years old who survived at least 72 hours (long enough for exposures to meds; long enough for liver function, kidney function, and other lab tests to show significant acute abnormalities, if they arise)
- **131** client institutions, admission dates 01-JAN-2008 thru 31-DEC-2010
- Excluded patients lacking prior encounters or who did not have previous encounters where liver function or kidney function test values were not measured or were not in normal range

BCPNN screen – In-hospital Mortality

- Mostly agents that prolong the EKG QT interval → fatal arrhythmias -OR-
- Agents that augment risk of other organ-system impairments (e.g. NSAIDs)

Medication or Combo or Concomitant Meds	Received Med or Combo (% of total)	Actual Nbr Died (% Rcvd)	Expected Nbr Died	Relative Risk	Act/Exp	p-value**	NNH
Ciprofloxacin	386 (5.8%)	129 (33.4%)	28.3	5.9	1.8	< 0.0001	3.1
Amiodarone +Phenytoin	39 (0.6%)	13 (33.3%)	3.7	5.9	3.5	< 0.0002	3.6
Ibuprofen +Azithromycin	25 (0.4%)	7 (28.0%)	2.2	4.9	3.1	< 0.01	4.5
Ibuprofen +Ciprofloxacin	24 (0.4%)	6 (25.0%)	2.5	4.4	2.4	< 0.05	5.2
Valproic acid	53 (0.8%)	12 (22.6%)	4.8	4.0	2.5	< 0.004	5.8
Amiodarone +Levofloxacin	277 (4.1%)	49 (17.7%)	26.5	3.1	1.8	< 0.0001	8.0
Acetaminophen +Phenytoin	135 (2.0%)	24 (17.8%)	8.5	3.1	2.8	< 0.0001	8.1
Phenytoin	158 (2.4%)	27 (17.1%)	9.7	3.0	2.8	< 0.0001	8.6
Amiodarone +Azithromycin	65 (1.0%)	9 (13.8%)	4.6	2.4	1.9	< 0.05	12.1
Acetaminophen +Azithromycin	277 (4.1%)	31 (11.2%)	18.0	2.0	1.7	< 0.003	17.4
Levofloxacin	736 (11.0%)	79 (10.7%)	51.4	1.9	1.5	< 0.0001	17.6
Azithromycin	327 (4.9%)	33 (10.1%)	20.8	1.8	1.6	< 0.006	21.5
Ondansetron +Ciprofloxacin	245 (3.7%)	24 (9.8%)	16.6	1.7	1.4	< 0.0001	23.4
Fluoxetine	131 (2.0%)	11 (8.4%)	4.9	1.5	2.2	< 0.02	36.0
Entire cohort	6,699 (100%)	380* (5.7%)	N/A	1.0	N/A	N/A	N/A

BCPNN screen – In-hospital Grade 4 Liver Injury

- Drugs and combos that have known liver toxicity → exacerbated risk in AMI pop
- **D**rug that is ordinarily low-risk for liver tox \rightarrow significant risk in AMI pop

Medication or Combo or Concomitant Meds	Received Med or Combo (% of total)	Actual Nbr Gr.4 liver inj (% Rcvd)	Expected Nbr Gr. 4 liver inj	Relative Risk	Act/Exp	p-value**	NNH
Ibuprofen +Levofloxacin	58 (0.9%)	9 (15.5%)	3.5	5.3	2.5	< 0.02	7.8
Amiodarone +Levofloxacin	277 (4.1%)	35 (12.6%)	18.1	4.3	1.9	< 0.0003	9.8
Amiodarone +Ibuprofen	110 (1.6%)	12 (10.9%)	5.8	3.8	2.1	< 0.02	12.2
Levofloxacin	736 (11.0%)	54 (7.3%)	35.7	2.5	1.5	< 0.001	19.9
Ondansetron +Levofloxacin	439 (6.6%)	32 (7.3%)	20.4	2.5	1.6	< 0.01	21.1
Venlafaxine	111 (1.7%)	8 (7.2%)	3.6	2.5	2.2	< 0.04	22.7
Entire cohort	6,699 (100%)	192* (2.9%)	N/A	1.0	N/A	N/A	N/A

Remarks – PV on Massively-Parallel Processors

Reduction-to-practice successful

- Discovered 20 important safety signals not previously recognized
 - Discovered 14 exposures that were associated with statistically significant (p < 0.05) increased risk of in-hospital mortality, elevated up to 5.9-fold above the mortality risk experienced by the cohort as a whole
 - Discovered 6 exposures that were associated with up to 5.3-fold increased risk of Grade 4 liver injury while the patients were in-hospital
- Performed on 32-node HP Vertica® MPP cluster (8*32=256GB RAM)
- Utilized Benjamini-Hochberg FDR control
- Signals confirmed/validated in independent sample
- Could become the basis for personalized, refined order-sets and plans of care (for AMI treatment, in this example)

Parallelization via Hadoop Map-Reduce on private cloud

- Implemented for large number of conditions and populations
- Implemented for high-cardinality formularies (pairs, triples, quads)

Cerner

Combinatorial explosion of concomitant meds combos

R fdrtool() FDR and FNR distributions - MGPS

Serial / sequential ... decimates <u>sensitivity</u>

- net_sensitivity = sens_t1 * sens_t2
- net_specificity = spec_t1 + [spec_t2 * (1 spec_t1)]

Parallel / simultaneous ... decimates <u>specificity</u>

- net_sensitivity = sens_t1 + sens_t2 (sens_t1 * sens_t2)
- net_specificity = spec_t1 * spec_t2

t	PRR	BCPNN	rBCPNN	MGPS	JSS	p(rBCPNN +MGPS)
sens	49%	46%	55%	27%	51%	67%
spec	94%	99.5%	89%	99.99%	99.7%	89%

2-Stage Method with FDR Control

Sensitivity \times Prevalence

 $PPV = \frac{}{Sensitivity \times Prevalence + (1 - Specificity) \times (1 - Prevalence)}$

Enrich putative AEs in mined dataset via Stage-1 screen to a target Prevalence ~ 15%

To achieve PPV > 0.50, we need this relationship between sensitivity and specificity:

$$\frac{Sensitivity}{1 - Specificity} > \frac{1 - Prevalence}{Prevalence}$$
$$\frac{0.60}{1 - 0.90} > \frac{1 - 0.15}{0.15}$$
$$\frac{0.50}{1 - 0.95} > \frac{1 - 0.10}{0.10}$$

Because of modest prevalence of AEs in as-treated population, to get higher PPV the specificity of the Stage-2 measure (MGPS) dominates.

Objective:

- Specificity > 0.90
- Sensitivity > 0.60

Cerner

Example – BCPNN-enriched to overall AE prevalence > 5%

- Exploring 35-60 YO in-patients with non-STEMI acute myocardial infarction + other conditions
- These patterns have never before been detected... not in any regulatory agency or other dataset

Medication or Combo or Concomitant Meds	Received Med or Combo (% of total)	Actual Nbr Died (% Rcvd)	Expected Nbr Died	Relative Risk	Act/Exp	p-value**	NNH
Ciprofloxacin	386 (5.8%)	129 (33.4%)	28.3	5.9	1.8	< 0.0001	3.1
Amiodarone +Phenytoin	39 (0.6%)	13 (33.3%)	3.7	5.9	3.5	< 0.0002	3.6
Ibuprofen +Azithromycin	25 (0.4%)	7 (28.0%)	2.2	4.9	3.1	< 0.01	4.5
Ibuprofen +Ciprofloxacin	24 (0.4%)	6 (25.0%)	2.5	4.4	2.4	< 0.05	5.2
Valproie ecid	53 (0.8%)	12 (22.6%)	4.8	40	2.5	< 0.004	5.8
Amiodarone +Levofloxacin	277 (4.1%)	49 (17.7%)	26.5	3.1	1.8	< 0.0001	8.0
Acetaninophen +Phenytoin	135 (2.0%)	24 (17.8%)	8.5	3.1	2.8	< 0.0001	8.1
Phenytoin	158 (2.4%)	27 (17.1%)	9.7	3.0	2.8	< 0.0001	8.6
Amiodarone +Azithromycin	65 (1.0%)	9 (13.8%)	4.6	2.4	1.9	< 0.05	12.1
Acetaminophen +Azithromycin	277 (4.1%)	31 (11.2%)	18.0	2.0	1.7	< 0.003	17.4
Levofloxacin	736 (11.0%)	79 (10.7%)	51.4	1.9	1.5	< 0.0001	17.6
Azithromycin	327 (4.9%)	33 (10.1%)	20.8	1.8	1.6	< 0.006	21.5
Ondansetron +Ciprofloxacin	245 (3.7%)	24 (9.8%)	16.6	1.7	1.4	< 0.0001	23.4
Fluoxetine	131 (2.0%)	11 (8.4%)	4.9	1.5	2.2	< 0.02	36.0
Entire cohort	6,699 (100%)	380* (5.7%)	N/A	1.0	N/A	N/A	N/A

"Drugs tested during the 1970s had a median effectiveness odds-ratio of **4.51**. This dropped to **3.78** in the 1980s, **2.02** in the 1990s, and **1.36** in the 2000s. It is possible that the easiest-to-discover and most-powerful treatments have already been discovered... In terms of drug development, it may make sense to start focusing on more homogeneous phenotypic patient subgroups, such as those that have well-defined biomarkers. It may make sense to give greater priority to improving the tolerability of existing drugs..."

-Mark Olfson & Steven Marcus, 2013

Olfson M, Marcus S. Decline in placebo-controlled trial results suggests new directions for comparative effectiveness research. Health Aff. 2013;32(6):1116-25. Agres T. Drug Discov & Devel 2013; 16(4):6-7.

Datamining in Health Facts and Healthe Intent

Large cohorts in observational datawarehouses

- STEMI and non-STEMI AMI
- Mild hypokalemia often
- QT interval frequently in high-normal range
- Some prevalent SNP variations in NOD1AP (not rare ones in KCNH2 and KCNQ1 and SCN5A genes)
- CYP1A2*1C (slow-metabolizer) vs. CPY1A2*1F (rapid-metabolizer) genotypes

Case Scenario

- 52 year-old Caucasian male presents with AMI and community-acquired pneumonia, receives PCI with stenting of the LAD coronary artery, and is placed on conventional AMI protocol in CCU. On Day-2 of hospitalization he develops a pattern of intermittent, hemodynamically unstable ventricular tachycardia and is placed on amiodarone.
- No other organ system abnormalities, and liver and kidney function tests normal. Mild hypokalemia (potassium 3.1 mEq/L). The patient's EKG shows a depressed ST segment and variable T-wave inversion consistent with acute MI,
- QTc = 475 msec (normal range between 350-470 msec in adult male).
- No known history of long-QT syndrome or sudden cardiac death in the family. No QTprolonging meds on-board.

Prevalence of Genotype-Phenotype Vectors

Haplotype Frequency by Risk Odds Ratio

Summary - 1

- In FDA AERS data, <5% of ever-reported drug-event pairs generate signals (95%LCL EB-adjusted O/E ratio (EB₀₅) >= 2) [Szarfman 2002].
 - But in obs EHR data that are not affected by human reporting sociology, more than 7% of ever-incident drug-event pairs generate signals
 - And in obs EHR data of ever-concomitant triples and quads have a rate over 10%
- Machine-learning in EHR (VLDB) requires 'vertical' and 'parallelized' computing platforms to deal with terabyte and petabyte scale
 - Sample size adequate for statistical power, in general, for individual care/prevention use-cases & population use-cases
 - Requires appropriate data rights, de-identification, and consenting for 'secondary-use' observational research (IRB reviewed)

Summary - 2

- Toolbox: R packages, MATLAB, Weka
- Bayesian confidence-propagation neural network, empirical Bayes, MGPS, James-Stein Shrinker, SVM, K-NN, other
- Ensemble' models combine evidence from multiple models
 - AdaBoost, Gradient Boost, RandomForest, Alternating Decision Trees
- Superior specificity and sensitivity, compared to traditional PV
- But requires careful FDR control to avoid excessive Type I error

Summary - 3

- 'Translational medicine' is not just "bench-to-bedside"
- It is also translating the other direction: "bedside-to-bench"
- Single-method PV suffers either from poor sensitivity or poor specificity or both
- Sequential 2-stage 'screen-confirm' has inadequate sensitivity
- Parallel BCPNN, MGPS, JSS (and perhaps other) signal detection can jointly optimize sensitivity and specificity
- Parallelization enables scale-up to large cohorts accruing in de-identified EHR-derived repositories on modern cloud computing systems
- Find true signals quicker!
 - Manufacturer, Regulator, PBM, Health Plan

References

- Ahmed I, et al. Early detection of pharmacovigilance signals with automated methods based on false discovery rates. Drug Saf. 2012;35:495-506.
- Ahmed I, et al. Pharmacovigilance data mining with methods based on false discovery rates: a comparative simulation study. Clin Pharmacol Ther. 2010;88:492-8.
- Ahmed I, et al. False discovery rate estimation for frequentist pharmacovigilance signal detection methods. Biometrics. 2010;66:301-9.
- Ahmed I, et al. Bayesian pharmacovigilance signal detection methods revisited in a multiple comparison setting. Stat Med. 2009;28:1774-92.
- Almenoff J, et al. Perspectives on the use of data mining in pharmaco-vigilance. Drug Saf 2005;28:981-1007.
- An L, et al. Mining pharmacovigilance data using Bayesian logistic regression with James-Stein type shrinkage estimation. J Biopharm Stat. 2010;20:998-1012.
- Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Roy Statist Soc Ser B 1995;57:289-300.
- Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Statist 2001;29:1165-88.
- Brown J, et al. Early detection of adverse drug events within population-based health networks: application of sequential testing methods. Pharmacoepi & Drug Saf 2007;16:1275-84.
- Constantine N, et al. Improved classification of recent HIV-1 infection by employing a two-stage sensitive/less-sensitive test strategy. J AIDS 2003;32:94–103.
- Held L, Ranyimbo A. A Bayesian approach to estimate and validate the false negative fraction in a two-stage multiple screening test. Methods Inf Med. 2004;43:461-4.
- Hochberg A, Hauben M. Time-to-signal comparison for drug safety data-mining algorithms vs. traditional signaling criteria. Clin Pharmacol & Ther 2009;85:600-6.
- Levine J, et al. Reply: Evaluation of datamining methods for simultaneous and systematic detection of safety signals in large databases. Br. J. Clin. Pharm 2005;61:105-13.
- Matsushita Y, et al. Criteria revision and performance comparison of three methods of signal detection applied to the spontaneous reporting database of a pharmaceutical manufacturer. Drug Saf. 2007;30:715-26.
- Olfson M, Marcus S. Decline in placebo-controlled trial results suggests new directions for comparative effectiveness research. Health Aff. 2013;32:1116-25.
- Park M, et al. A novel algorithm for detection of adverse drug reaction signals using a hospital electronic medical record database. Pharmacoepi & Drug Saf 2011;20:598-607.
- Shu Y, et al. Sequential evaluation of a medical diagnostic test with binary outcomes. Stat Med. 2007;26:4416-27.
- Storey J. The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Statist 2003;31:2013-35.
- Szarfman A, Machado S, O'Neill R. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA's spontaneous reports database. Drug Saf. 2002;25:381-92.
- Tubert-Bitter P, et al. Comparison of two drug safety signals in a pharmacovigilance data mining framework. Stat Methods Med Res 2012 Oct 4 [Epup ahead of print]

Thank you!

October 23, 2013