Pivota

BUILT FOR THE SPEED OF BUSINESS

The Emerging Role of Data Science in Pharma: How to Harness this Transformative Practice

Sarah Aerni, PhD Senior Data Scientist

saerni@gopivotal.com PRISME May 15, 2014

Agenda

- Driving Transformation through Data Science
- Pivotal Technology Enabling Innovation and Driving Insights
 - The right technology for the right job
 - Reinventing data processing through paradigm shifts
- Use Case Discussion
 - Predicting pharmaceutical potency

Enabling Disruption with Data Science

• To successfully build a data-driven enterprise, skilled individuals need to have access to data, tools and channels for operationalization

What Is Pivotal Data Labs?

٠

Data Engineering

Data Science

The Quantified Patient

Leveraging healthcare data to drive predictive and personalized care

Data driven drugs: From discovery to delivery

RICH DATA SOURCES

- Molecular data
 - Cellular drug screens
 - Animal models
- Clinical data including notes, images, markers (e.g. genomics, lab results)
- Sensor and assay data
- Internal and partner/purchased external data
- Contact center data
- Patient registries, public and federal data, clinical partnerships

The landscape of technology for big data

Sample Applications

Challenges

Use Cases

Batch processing of large volumes of data	Not optimal for highly iterative methods, functions over windows	Word count on tweets

Analytics on large- scale structured data	Requires restructuring of data to manipulate very large files	Predicting mortality on clinical data from diverse sources
--	---	--

HAMSTER/MPI Operations on very GraphLab large matrices

Requires knowledge of OpenMP, mis-used for embarrassingly parallel problems

Protein docking, molecular dynamics

Choosing the right environment for different analytics challenges

	Imaging	Clinical E Narratives	Genetics
HD	Good for processing many images rapidly	Many documents with no shared processing	Read mapping
HAWO	In-database processing of very large images stored as a table	Information retrieval	BAM file manipulations, counts
HAMSTER/MPI GraphLab	Processing very large images		Multiple sequence alignment

Pivotal

A new architecture for improved pipeline

In-database genome-wide association study

COVARIATES

Indiv	Covariates		iates SNP				
	1	2		10	1	2	М
1	F	23		18	AA	СС	TT
2	Μ	39		41	AT	CG	TT
3	М	50		23	AA	GG	TC
	:	:					
Ν	F	19		24	TT	CG	ТС

In-database genome-wide association study

COVARIATES

GENOTYPES

Indiv	Covariates			
	1	2		10
1	F	23		18
2	М	39		41
3	М	50		23
Ν	F	19		24

Indiv	SNP	Geno			
1	1	AA			
2	1	AT			
3	1	AA			
1	2	CC			
2	2	CG			
3	2	GG			
Ν	М	ТС			

In-database genome-wide association study

Visualize and analyze genomics data without movement

Generate relevant plots using tools like Tableau immediately after parallel statistical analysis in-database on Pivotal technology

Visualize and analyze genomics data without movement

Visualize and analyze genomics data without movement

Data driven drugs: From discovery to delivery

RICH DATA SOURCES

- Molecular data
 - Cellular drug screens
 - Animal models
- Clinical data including notes, images, markers (e.g. genomics, lab results)
- Sensor and assay data
- Internal and partner/purchased external data
- Contact center data
- Patient registries, public and federal data, clinical partnerships

Vaccine Potency Prediction

Business Problem

Predict potency and antigen levels of live virus vaccines based on manufacturing sensor data and manual data collected throughout the process.

Simplified Vaccine Manufacturing Process

Enabling predictive models through new architectures

Challenges

- Accessibility
 - Some data had never been used in predictive modeling due to poor data models
- Data Integrity
 - Manually entered data is prone to errors. There is no immediate feedback to examine the validity of the values entered
- Data Completeness
 - Manual data entry is time consuming. There is no feedback on what data is most useful in improving the efficiency and quality and hence no prioritization of what data should be collected

Purpose-built data models for rapid data querying and exploration

Automated data cleansing techniques

Opportunities to eliminate collection of incomplete or non-predictive data

Model generation and evaluation

Predicting vaccine potency using manufacturing data

Feature engineering and transformation

 Enabled by rapid in-database processing

- Experimentation with model forms
 - Partial least squares
 - Random forest
 - Regularized regression
- Interpretation of model results for insight generation
 - Use cross-validation framework to assess variable importance

Sample model insights

Interpreting the utility of a measure obtained during manufacturing based on model outcomes

- Some features may reveal tunable parameters to alter potency, others may simply be markers
- Features consistently absent from models *may* be uninformative for predicting potency
- Opportunities to provide realtime feedback on data entry errors and predicted potency outcomes

Data driven drugs: From discovery to delivery

Enabling Disruption with Data Science

• To successfully build a data-driven enterprise, skilled individuals need to have access to data, tools and channels for operationalization

Pivota

BUILT FOR THE SPEED OF BUSINESS