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Background and approach 
 

The U-BIOPRED consortium is an EU-wide collective of academics (20 
institutions), biopharma industry (12), SME’s (3), and patient 
organisations (6) working collaboratively to improve understanding of 
severe asthma. Representing the largest study cohort recruited for this 
disease, a variety of sample types are currently being analysed in 
parallel using a range of ‘omics technologies to map molecular and 
clinical phenotypes of severe asthma in an unbiased manner.  The 
heterogeneity of the disease, combined with the complexity of the 
study cohort (e.g. participants on a combination of medications, and 
varying co-morbidities), the range of biofluids and tissues analysed 
(each with corresponding challenges), and the multiple analytes being 
measured (e.g. lipids, proteins, mRNA) have necessitated the 
development of multiple data analysis pipelines to mine these complex 
datasets. One of the approaches used by the consortium is Topological 
Data Analysis (TDA), implemented via the Ayasdi software platform. TDA 
generates topological networks (Figures 1&2) that allow the scientist to 
explore, condense, visualise and extract useful information from these 
complex and multi-modal data.  The subsequent sections show 
examples of how the Ayasdi platform is being used to combine and 
analyse proteomic data produced in the U-BIOPRED study, particularly 
highlighting the utility of the approach in exploring the biology of the 
data and as an unbiased feature selection tool.  The datasets used to 
construct the example analyses represent only a small fraction of the 
final UBIOPRED cohort. As such, all results and interpretations must be 
viewed as exploratory and illustrative of approach and may not be 
representative of any final outcomes of the study. 

Exploring features of complex data from 
multiple sources 

 

Proteomic data, obtained from the analysis of sputum supernatant and 
top-12 depleted serum using the data independent acquisition 
approach MSE, were searched against the UNIPROT database for 
identity assignment and quantification using the Hi-3 method2.  Each 
dataset was normalised and batch effect correction performed where 
necessary using modified ComBat3 scripts.  Proteomic data were 
subsequently aligned and clinical information were added as metadata, 
resulting in a complete dataset for 80 asthmatic participants.  Missing 
values in all data types were not imputed and left as ‘null’. Data were 
loaded into the Ayasdi platform, including proteins with up to 60% null 
values, and analysed with a normalised correlation metric and multi-
dimensional scaling (MDS) lenses. The resultant graph was explored 
using the proteomic and clinical data, and groups selected using the 
clinical meta-data (Figures 3 & 4).  

References.  1: Lum et al., (2013). Extracting insights from the shape of complex data using topology.  Sci reports  2: Silva et al., (2006). Absolute 
quantification of proteins by LCMSE. Mol Cell Proteomics   3:  Johnson et al., (2007) Adjusting batch effects in microarray expression data using empirical 
Bayes methods. Biostatistics . 4:  IDBS InforSense Suite, http://www.inforsense.com/  5:  Robnik-Sikonja &  Kononenko, (2003). Theoretical and empirical 
analysis of ReliefF and RReliefF. Mach Learn 

 

 

Figure 3. Exploration of the combined graph with clinical and proteomic features. Panel A shows distribution 
of assigned cohorts . Panels B-E show various aspects of  characterised by eosinophilic inflammation and 
atopy (sensitisation to common aero-allergens like house dust mites)  with subtle differences in airway vs. 
systemic indicators.  Panels F-H contrast eosinophilia from previous panels with neutrophilia.  Interesting 
differences in sputum neutrophil counts vs systemic neutrophil counts can also be observed.  Panels I & J 
contrast participant use of short acting beta agonists and oral corticosteroids (converted from categorical 
data). There appears to be correlation between short acting beta agonist use and a subset of participants 
with sputum neutrophilia 

Investigating large datasets 
 

Modern high resolution mass spectrometry produces large quantities of 
spectral data that is often discarded following routine database 
searching. In order to mine this wealth of sample information we have 
developed an approach that aligns and groups four dimensional ions 
generated via high throughput LC-IMS-MSE (Figure 5).   These large 
matrices, with significant sparsity, are then analysed on the Ayasdi 
software platform in order to find persistent local groupings of 
potentially interesting molecular ions (Figure 6) that can then then be 
interrogated for identity and/or fed into classification models. 

Figure 5. Ion features in a typical sputum 
LC-IMS-MSE experiment. The intensities 
of  ~500 000 ions per sample are 
measured following separation according 
to their Drift time, Retention time and 
Accurate Mass (m/z), (DRAMI). 

Figure 6. Feature reduced (~70 000 features per sample) TDA graphs generated from DRAMI files were 
contrasted to clinical information and examined for persistence (red shading) when varying lenses, metrics 
and analysis resolution. This process is valuable as a feature selection process preceding downstream ion 
interrogation and classification approaches. 
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Feature and class selection in cryptic datasets 
 

Traditional statistical analyses of data from high throughput proteomic 
analysis of serum from asthmatics, produces datasets with very few 
differentiating features (Table 1 and Figure 6).  Using the Ayasdi software 
platform we were able to identify groups of participants based on these 
serum data, with specific group assignment guided by persistence of 
structure and contrasting clinical metadata (Figure 7). These topological 
groups were subsequently used as class labels in supervised machine 
learning approaches, implemented in InforSense4 (e.g. support vector 
machine, Figures 8 & 9), and resulted in an improved classification 
performance and predictive models over cohort information alone.  

KS test FDR correction

Severa Asthma vs. Asthmatic Smokers 3 1 1.18

Severa Asthma vs. Mild/Moderate 15 2 1.31

Asthmatic Smokers vs. Mild/moderate 9 1 1.26

Comparison
Features: p < 0.05 Average 

Fold Change

Eosinophilic Group: 132 
proteins KS p < 0.05. 
e.g.      TSN1,  p = 2.4e-8  
             CLIC1, p= 1.4e-6  

             GSTA2, p= 3.7e-6  

 

Milder group : 94 proteins 
KS p < 0.05. 
e.g.      TKT,  p = 1.4e-4  
             CERU, p= 0.0012  
             Serum LBP, p=0.0032 

Mixed group: 93 proteins KS 
p < 0.05. 
e.g.      COTL1,  p = 8.1e-5  
 
 Enriched for participants  
on daily dosage of 
leukotriene modifiers         
(p = 0.0018) 

Neutrophilic Group: 122 
proteins KS p < 0.05. 
e.g.      TPIS,  p = 9.6e-4  
             PRDX1, p= 9.6e-4  

             MMP8, p= 9.9e-4 

Enriched for rural 
participants (p=8.6e-4), 
and daily tiotropium 
bromide use (p=0.01) 

Figure 4. Selection and analysis of subgroups using standard statistical tests (Non parametric and 
hypergeometric) revealed features of specific groups and their participant membership. This information is 
being used as a basis for hypothesis generation 
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Table 1. Differentially abundant serum proteins assessed 
using the Kolmogorov-Smirnov test prior to TDA.  Very few 
proteins show differences in abundance levels between the 
asthmatic cohorts, particularly following multiple testing 
correction.  Those that are statistically different have low 
magnitude of change.  Figure 7 (right).  When cohort  
assignments were used as class labels in support vector machine analysis, the resulting model displayed poor 
classification performance 

Figure 8.  Grapical display of serum data analysed using the Ayasdi platform.  Group assignments were 
based on persistence of groups, and guided by clinical metadata 

Figure 9.  (left) (left) Analysis of TDA groups using support vector machine learning resulted in improved 
classification models.  Figure 10. (right) ReliefF5 and feature evaluation implemented in InforSense software 
were used to reduce the feature space to 14 proteins that were fed into the classifier. As a result, an excellent 
model was obtained for three of the class assignments from Ayasdi TDA 

Figure 1(Left) Summary of the Ayasdi approach1 A) A 3D object (hand) represented as a point cloud.  This 
point cloud can also be generated through e.g. correlation analysis of a complex dataset B) A filter value is 
applied to the point cloud and the object is now coloured by the values of the filter function. C) The data set is 
binned into overlapping groups. D) Each bin is clustered and a network is built. Figure 2  (right) Resolution and 
gain of graphs from : A) analysis of a point cloud . (B&C) Resolution alters the number of data points in each 
node (D&E) Gain alters the bin overlap and  the subsequent number of edges between nodes 

A) Original point cloud 

B) Colouring by filter value 

C) Binning by filter value 

D) Clustering and network construction 

A) Original 
point cloud 

B) Gain 2.0 resolution 12 

C) Gain 2.0 resolution 30 

D) Gain 3.0 resolution 30 

E) Gain 4.0 resolution 30 
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