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Traditional statistical analyses of data from high throughput proteomic
analysis of serum from asthmatics, produces datasets with very few
differentiating features (Table 1 and Figure 6). Using the Ayasdi software
platform we were able to identify groups of participants based on these

N MMPS, p=9.9¢*
Enriched for rural
participants (p=8.6e*),
and daily tiotropium
bromide use (p=0.01)

The U-BIOPRED consortium is an EU-wide collective of academics (20
institutions), biopharma industry (12), SME’s (3), and patient
organisations (6) working collaboratively to improve understanding of
severe asthma. Representing the largest study cohort recruited for this

Proteomic data, obtained from the analysis of sputum supernatant and
top-12 depleted serum using the data independent acquisition
approach MSE, were searched against the UNIPROT database for

e.g. V COTLL, p=8.1e"

disease, a variety of sample types are currently being analysed in identity assignment and quantification using the Hi-3 method2. Each severe Asthmatic serum data, with specitic group assignment guided by persistence of
: ‘(i : , , ' N4 @ Severe Asthmatic structure and contrasting clinical metadata (Figure 7). These topological

pérgllel using a range of ‘omics technqlogles to map molecular and dataset was normalised and batch effect correction performed where e T T e = e derate o fl q ass | (b% . ) <od P i

clinical phenotypes of severe asthma in an unbiased manner. The necessary using modified ComBat® scripts. Proteomic data were p < 0.05. \ Asthmatic groups were subsequently used as Class labels In supervised machine

learning approaches, implemented in InforSense* (e.g. support vector
machine, Figures 8 & 9), and resulted in an improved classification
performance and predictive models over cohort information alone.

heterogeneity of the disease, combined with the complexity of the
study cohort (e.g. participants on a combination of medications, and
varying co-morbidities), the range of biofluids and tissues analysed

Enriched for participants

subsequently aligned and clinical information were added as metadata,
resulting in a complete dataset for 80 asthmatic participants. Missing on daily dosage of Milder group : 94 proteins
leukotriene modifiers

values in all data types were not imputed and left as ‘null’. Data were " KS p < 0.05.
(p =0.0018) e.g. V TKT, p = 1.4e 11

(each with corresponding challenges), and the multiple analytes being loaded into the Ayasdi platform, including proteins with up to 60% null S GO o Featuresip <005 | pyerage | -
measured (e.g. lipids, proteins, mRNA) have necessitated the values, and analysed with a normalised correlation metric and multi- ST B v Serum LBP, p=0.0032 L ) el 0o
development of multiple data analysis pipelines to mine these complex dimensional scaling (MDS) lenses. The resultant graph was explored Figure 4. Selection and analysis of subgroups using standard statistical tests (Non parametric and Severa Asthma vs. Asthmatic Smokers | 3 1 | zj
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analyse proteomic data produced in the U-BIOPRED study, particularly Asthmatic searching. In order to mine this wealth of sample information we have magnitude of change. Figure 7 (right). When cohort wioe TosTe e
highlichti h ili f th hi lori he biol f th ] ] ] . assignments were used as class labels in support vector machine analysis, the resulting model displayed poor
Ighlighting the utility or the approach in exploring the biology ot the . developed an approach that aligns and groups four dimensional ions classification performance
data and as an unbiased feature selection tool. The datasets used to = B A [ — Sputum Eosinophils generated via high throughput LC-IMS-MSE (Figure 5). These large ,
construct the example analyses represent only a small fraction of the matrices, with significant sparsity, are then analysed on the Ayasdi Neutrophilic Group 2 Severe Asthmatic

: : : . . . . : S Asthmati
final UBIOPRED cohort. As such, all results and interpretations must be software platform in order to find persistent local groupings of - @ >evere Asthmaric

Mild/Moderate

viewed as exploratory and illustrative of approach and may not be e 0

representative of any final outcomes of the study.

potentially interesting molecular ions (Figure 6) that can then then be
interrogated for identity and/or fed into classification models.
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Figure 9. (left) (left) Analysis of TDA groups using support vector machine learning resulted in improved
classification models. Figure 10. (right) ReliefF> and feature evaluation implemented in InforSense software

~y Figure 3. Exploration of the combined graph with clinical and proteomic features. Panel A shows distribution
of assigned cohorts . Panels B-E show various aspects of characterised by eosinophilic inflammation and

Normalized Gorrelation Variance normalised Euclidian
T 3 > with Neighbourhood lenses

Figure 1(Left) Summary of the Ayasdi approach! A) A 3D object (hand) represented as a point cloud. This
point cloud can also be generated through e.g. correlation analysis of a complex dataset B) A filter value is
applied to the point cloud and the object is now coloured by the values of the filter function. C) The data set is
binned into overlapping groups. D) Each bin is clustered and a network is built. Figure 2 (right) Resolution and
gain of graphs from : A) analysis of a point cloud . (B&C) Resolution alters the number of data points in each
node (D&E) Gain alters the bin overlap and the subsequent number of edges between nodes

atopy (sensitisation to common aero-allergens like house dust mites) with subtle differences in airway vs. owsin o Rows in Node

systemic indicators. Panels F-H contrast eosinophilia from previous panels with neutrophilia. Interesting
differences in sputum neutrophil counts vs systemic neutrophil counts can also be observed. Panels | & J
contrast participant use of short acting beta agonists and oral corticosteroids (converted from categorical
data). There appears to be correlation between short acting beta agonist use and a subset of participants
with sputum neutrophilia

Figure 6. Feature reduced (~70 000 features per sample) TDA graphs generated from DRAMI files were
contrasted to clinical information and examined for persistence (red shading) when varying lenses, metrics
and analysis resolution. This process is valuable as a feature selection process preceding downstream ion
interrogation and classification approaches.

were used to reduce the feature space to 14 proteins that were fed into the classifier. As a result, an excellent
model was obtained for three of the class assignments from Ayasdi TDA
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