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Introduction In Silico Drug Repurposing: Target Re-indicating

Vs Drug Re-targeting

Costly, protracted drug development, coupled with increasingly high clinical attrition
rates, have fuelled the pharmaceutical industry’s interest in drug repurposing strategies.
Drug repurposing is the rational application of a known drug to new indications and can
lead to shorter, less costly drug development cycles with increased probability of
success™.

@ New Development Projects 90% 90%

M Repurposed Drugs _
64 %

50%

Parkinson’s Disease (PD) is the 2" most common neurological disorder, involving
progressive disruption of motor function with possible psychiatric complications, caused
by depletion of dopaminergic neurons in the nigrostriatal system. Drug repurposing
represents a potential strategy for cost saving and risk mitigation in the treatment of

Phase lI Phase Il Submission neurodegenerative diseases, including PD, where drug approval rates are low (~8%F").
Fig. 1. Dru approval rates in clinical . . . . .
degvelopment R%purggsed drugs have a greater A data-driven strategy was adopted to identify drugs in clinical development that target
probability of success than new development molecules relevant to the patho-physiology of PD but that are not indicated for PD.
projects. Data from the Centre for Medicines Systems-level genomics data sets were combined with commercial knowledge
Research (CMR) International Pharmaceutical R&D management resources to enable a rational prioritisation of repurposing candidates.
Factbook.

*Ashburn, T.T. & Thor, K.B. (2004). Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3, 673-683.
tKola, I. & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3, 711-715.

Feature Generation

% :
s Feature Integration
Qo .
@ oonne '< : >-r e H BONF TC: 5 KNOWLEDGE DISEASE Disease Based Features
) S o _ © Grossly approximate the similarity
ﬂ/ i eI ettt e between PD and other diseases based
© Dopamine g 4 Trka 2 The on overlap between reported
she S biomarkers and biomarker-enriched
g GR;‘@I—»aSOS p pathways. 4  Different  similarity
Adenylate cyclase type V 4-6-1-1' *c-Raf-14 \QH-Ras* L(a; methOdS Were apphed
PKAreg ; @ e oy > Integrated
(CAMP-depen en%‘ ye *‘\ */‘MEK1(MAP2K1)* é Classifier Molecular Differentially |
(cAMP-deperﬂ e ¢ Erk (MAPK1/3) :7/96 f—,,;% node O expressed gene . Candidate
e FosB l 063% %% %‘% Q§ o
0. S O S\ o c ~ RN
cep | " ' ok N1 a3 ooy \ / “f‘ Network Based Features
e S & | /i c o=ty Prioritise topﬁloglcally S|gnn‘|cantI
— D = : oiabes actors in the transcriptiona
N1 k \ regulatory network underlying PD
S . s, Using 4 different network metrics
= S e.g. visitation frequency from a
Knowledge Based Features @ NETWORK Y A N (Rar?dom Walk). ) Iant gene
Capture a priori knowledge of the molecular aetiology of PD %Qia o %/;”)} signatures were derived from 8
using curated disease pathways, therapeutically precedented o g5 2% public PD case-control genomic
mechanisms and molecular interrelations to known disease Drug, biomarker and pathway information were retrieved E: %3 studies identified using NextBio.
biomarkers. 5 knowledge-based features were captured for 22 from Thomson Reuters’ Integrity and MetaBase databases.
diseases. THOMSON REUTERS
Model Training and Selection Prediction Results
Positive Controls Negative Controls The 3 feature classes, totalling 146 features and
Phas [0 Biological Testing encoding knowledge-, disease- and network-based
[/11] Preclinical IPhasel™"*¢ gg:gilﬁn%d considerations were used to enumerate a set of
1w [ IND Filed positive and negative PD drug controls.
| [ Launched
Phase || Biological e The positive control set consisted of 32 targets of sioogical
_ [IPhase | drugs with a “validated” status for PD in Integrity. The Testing
o Testing L]Phase Il negative control set comprised 320 launched, non-PD
Preclinical Bl Phase I drug targets.
[] Pre-Registered
Sgﬁﬁﬁinded;\ppmw. Fig. 2. Development status of the positive and negative
L] Registered PD drug target controls. Positive controls: a validated
[] withdrawn . ; : .
Phase || status means the target is associated with the mechanism
L aunched of action of a drug under active preclinical/clinical
. development or launched in PD. Negative controls: launched
Negative drug targets not associated with PD, either directly or Launched
Controls indirectly, through related compounds or genes.
Validated (32) All targets (1423) | 26
AUC Top Hit Rate  Sensitivity Specificity  Balanced accuracy
8nccj:||fj§irr?gts€?45$g::;§n: Iicl)gr(e)gtthanr:dS The_ selected Random Fore_st class_ifier was run on all the
LDA) were tr,ained using the 3 available 1423_ drug tar_gets in Integrity gnd predicted a total of
feature groups as input vectors 126 repurposing candidates fo!* PD (Fig. _5A). 35 of the 70
both individually or in combination target; assp_aate_d to PD but .WI_thOUt a \_/alldated sta’Fus, were
A 10-fold Cross validatior; _ a.Iso_ _|dent|f|ed in the predictions. _Thls ove_rlap is highly
e procedure, together with ROC curve E S|gn|f.|c_ant (p-valu.e<_10'18) and provides confidence for the
analysis ’ was used to select % AUC: 81.5% (70.9%—92.1%) remaining 59 predictions.
:Iszcerérsmr\rl?)glgrperfg;;fg:gleds ana Of the 59 remaining predictions, 23 are products undergoing
' active clinical development with no existing consideration for
r 1 . . PD (Fig. 5B) This category of repurposing candidates is of
A Random Forrest  classifier, o interest because clinical safety and tolerance data is available
incorporating all 146 input features, but the potential remains to be first in class in PD.
was selected as the optimal model
I | using the top hit rate metric. v | | | | |
Mez?:: 68.53 29.41 62.50 79.42 67.67 100 8280 60 40 20 0

Specificity (%)

Fig. 3. Global comparison of all classification models. A number of metrics of model Fig. 4. Receiver operating characteristic curve analysis. Compares how sensitivity scales with specificity for different model
performance were considered. Red and blue cell intensities correlate with distance above discrimination thresholds. Thresholds were selected to maximise the balanced accuracy (red intersect), which avoids inflated
and below the median value for each performance metric. performance estimates on imbalanced datasets. The area under the ROC curve (AUC) correlates with model performance and

Conclusions

can be used as a standardised metric for method comparison.
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