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 The assessment of the safety of medicines is taken very
seriously by the industry and regulatory authorities

« Getting the toxicological risk assessment wrong can have
significant impacts on patient health

* The perception of a risk can reduce the benefit of a
potential medicine

It benefits no-one to produce a medicine with an
unacceptable safety profile
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Beyond the risk to the patient

Cost of toxicological failure
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Kola and Landis Nature Reviews Drug Discovery 3, 711-716 (August 2004)

Nature Reviews | Drug Discovery

«  >20% of candidate drugs fail due to unpredicted toxicology
- Additionally, some drugs fail to reach efficacy due to dose-limiting toxicology

- Each compound failure in the clinic costs between $10M and >$100M depending on
when it fails

- Better prediction of potential risk early
Avoid the problem

- Better understanding of potential risks in patients (or subsets of patients)
Manage the risk

« Only small changes = huge benefits



Influencing choice in drug discovery V4

« Successful drug discovery and development is about making the right decision
at the right time
The “big” decision points (milestones, tollgates etc.) are not the important ones

« The right decision requires access to the right information
« The right time is dictated by the phase of the drug-discovery process

« Scale approaches to deliver to the decision-making cycle
data delivered late, might as well have not been generated at all!

Influence design here Understand and mitigate issues here

Candidate
Target choice delivery Regulatory tox

studiesto FTIH
Lead Generation Lead Optimisation Clinical Testing and post—
— A = ’ marketing surveillance




Influencing choicein drug discovery

Needs: Scaling approaches to the volume and rate of analysis

Milestone Volume of analysis Rate of analysis  Approach
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«  Cannot simply move the “traditional” testing paradigm to earlier phases in drug discovery

N

« Unethical and incompatible with 3Rs and animal usage

td Y

< Cannot handle the volume of analysis
« Cannot handle the rate of data delivery

* Need to adopt more in vitro and in silico approaches
+  Computational Biology



Efficacy consideration

Toxicologists are Systems Biologists

One disease Drive”
One mechanism in one disease

One target in one mechanism in
one disease

One therapy against one target
In one mechanism in one

disease

Has the drive produced here limited
our understanding here?

eThe "single protein” model of cause
and effect

“Reductionis§

4

“Systems
Drive”

Toxicological consideration

One therapy (perturbation)
Multiple mechanisms

* Primary effects

» Predicted secondary effects
Effect(s) in healthy volunteers

» Effects on normal biochemistry
Effect(s) in the patient

» Effects on potentially abnormal
biochemistry

* Interaction with other therapies
Effect(s) in a population of patients

+ ldiosyncrasy




Cardiac lon channel liabilities

Background biology: Origin of the ECG

| Excitation initiated in the

ACTION POTENTIAL

L sino-atrial node spreads
through the heart
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Background biology

Information derived from the ECG: PR, QRS & QT intervals

< PR(PQ) »

PR(PQ): an index of conduction
through the atrio-ventricular node

QRS: an index of conduction through

|
|
|
|
|
|
|
|
i
i
|
|
:
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QT: an index of action potential
duration in the ventricles
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Background biology
Key ion channels underlying action potentials* <4

* Only o sub-units shown

Kvll.1 (hERG)

Kv4.3 Ca?t Kvl1l.5
Kv7.1

Na*

outside

HCN

i
IIIE F 3 T

inside

Caz*

Cavl.2

Cav3.2

J ventricular myocyte Atrial myocyte
action potential action potential

From a pre-clinical perspective, this molecular understanding is fundamental
to being able to prevent or minimise ECG risk

Bers (2001). Excitation-Contraction Coupling and Contractile Force. Kluwer Academic Publishers, Netherlands. ISBN 0-7923-7157-7.



What's the problem?

Effect of channel block on action potentials & ECG

Caz+ Na*
Nay 5

(INa)

Cay
(ICa,L)

AV nodal Ventrlcular Ventricular

JLMALM

Increase PR interval Increase QRS duration Increase QT duration

AV block Ventricular tachycardia Torsades de Pointes



What's the problem?

Strong evidence that inhibition of cardiac ion channels can lead to life-threatening arrhythmias 4

Channel | Congenital “loss of Pharmacological Example drugs
function” mutations can |inhibition can lead
lead to: to:
Navl.5 Atrial fibrillation; Ventricular Ventricular Encainide;
fibrillation; Sick Sinus Tachycardia Flecainide!
Syndrome
Cavl.2 ST segment elevation AV block Verapamil?;
Diltiazem
Kv1l.1 Torsades de Pointes Torsades de Pointes Astemizole;
(hERG) Cisapride;
Droperidol;
Terfenadine;
Thioridazine;
Terodiline3

1 Echtetal., N Engl J Med. (1991); 324, 781-8. 2 Cohen et al. Neurology (2007); 69, 668-75. 3 see Redfern et al. Cardiovasc Res (2003) 58, 32-45.



In Silico Cardiac lon Channel strategy

Target
Selection

In silico

Lead
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Lead
Optimization
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individual channels
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Launch

Product
Maint.

Prediction of effect on ventricular action

potential duration based on measured

activity at individual channels

Test
compound

=

Predicted
Activity at:
hERG
Navl.5

Channel Data
Navl.5 inactive
‘ Kv4.3 inactive
Cavl.2 1C50 10 uM
Kv7.1 inactive
Kv1l.1 ICso 5 UM
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hERG QSAR in AstraZeneca

AstraZeneca hERG QSAR:

Diverse Molecular Descriptors and Statistical Methods to Generate a 'Consensus’ Prediction
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Impact : Less hERG related cardiac arrhythmia liability over time
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In Silico Cardiac lon Channel strategy

Target
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Multi-Scale Modelling: Assessing Cardiac Safety

Modelling of Interactions

on the Protein Level
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Modelling of Action
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Systems Model of Cardiac lon Channels
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Reponse (% of Control)

Systems Model of Cardiac lon Channels
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Systems Model of Cardiac lon Channels

200+
180
1604

120

Reponse (% of Control)
(xS P [e]
o .O o o

1404

1004

[s2]
o
i

i

ot Ty L Lo I Dex Leve leam

% Change in APD90

o hKvl1.1 (ERG)
o hNavi5 (hiNa)
O hKv7.1-hKCNE1 (hiKs)
' hKv4.3-hKChIP2.2 (hito)
o hCavl2 (hCa)

20%

Yoo

_50%
0.001 001

Modelling of Action

AZ13329414 [uM]

Potential 'System’

80+
J[——Model
60
401

201

V-10% Ao threshoid

Low potency, non-selective blocker

INE ICltu INaCu Ipttal ICu.h ICI.h

——Experiment

10% APD threshold

0.001 0.01 01

AZ13329414 [uM]




Systems Model of Cardiac lon Channels

Compound that activates some channel types and blocks others
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Moving beyond arrhythmias

Cardio-Vascular toxicity and Drug Withdrawals post Phase |

e.g. Other toxicities,
Efficacy, Portfolio etc.

Contractility

/

Remodelling

Haemodynamic

Myopathy

/

i
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Moving beyond arrhythmias

Drugbank L|p0ph|I|C|_ty
Withdrawn CV (Arrhythmia)
Withdrawn CV (Long QT syndrome)
Withdrawn (other CV tox)

Withdrawn (other)
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*  QSAR modelling for compounds with CV toxicity
Molecules with similar properties are plotted close together
Plot of withdrawn compounds overlaid on all compounds in DrugBank

* No clear structural bias of compounds with CV toxicity beyond a tendency towards lipophilic
molecules (shared with most withdrawn compounds)
Cannot predict CV liability solely based on molecular structure

« Despite data complexity, too much “biology” for this approach to work
« Biological understanding is lacking: what are the molecular mechanisms?
* Need to improve the basic science before we can develop further models



Dynamic modelling: Focus on idiosyncratic DILI

Drug-induced liver injury (DILI)
Intrinsic: predictable, dose dependent e.g. acetaminophen
ldiosyncratic: unpredictable, dose independent (?)

For pharmaceuticals, idiosyncratic DILI accounts for a significant number of
patient deaths annually

These occur in a minority (by definition) of patients
Occurs late in the clinical development phase or even post-marketing
Cost the industry $$$$$

Regulators are demanding larger and larger trials, beyond that required to
establish efficacy, in attempts to detect idiosyncratic drug reactions

Cost $$$$
Delays getting new medicines to patient

Need new approaches to the early prediction of idiosyncratic DILI
Preclinical screens (in vitro, in vivo)
Early clinical trials (biomarkers)

People are not even a good model of people!
Can dynamic modelling render the unpredictable, predictable?



Idiosyncratic DILI is...well...complicated!
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Idiosyncratic DILI has a
spacial component

of "4 Propagation ang amplification

Celltoxicity
Cell proliferation

Inflammatory cell infiltration
Immune activation (innate, adaptive)

Collagen deposition, tissue remodelling

Resolution,
adaptation

\/ariahilit\s
varia ﬁjﬂfﬂﬁl‘g

— Genetic

— Epigenetic (age, sex,
diet, disease status etc)

— Environmental

Processes affecting toxicity
Disposition (uptake, distribution,
metabolism and excretion)
Between and within species

Hepatotoxicity

Idiosyncratic DILI is multi-factorial due to a “perfect storm” of factors
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Goals of DILI-sim 4]
4

Industry hepatotoxicity challenges DILIsym™ model contributions

Nonclinical » invitroto in vivo extrapolation across ¢ Predictin vivo hepatotox across

mouse, rat, and dog speoies from minimal in vitro data

Aim is to prowde tools that can help integrate and
Interpret structural, in vitro and in vivo data to predict

likely hepatic responses in preclincal species and
ultimately man

biom arkers candidate biomarker combinations
and/or mechanistic links
NEAR-TERM GOAL
Phase ll/l1] + Interpretation of clinical liver signals: + Predict hepatotox response across
Clinical Trials and Due to drug or comorbidity? wide range of patient types
Post-Market + |dentifying and/or evaluating DILI + Use simulations to propose
Surveillance biomarkers candidate biomarker combinations

and/or mechanistic links
LONGER RANGE GOAL
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The DILI-sim Modeling Approach: Multi-Scale

“Middle-out” approach
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DILIsym™ Model v1.0 Sub-model Interactions:

Drug Metabolism, GSH, and Mito. Dysfunction
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Form to Function Approach Links Dynamic Changes in Hepatocyteg

to Liver Function
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Good Agreement Between Simulations and Measured Data in Rats

Following APAP Overdose
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Population Sample Generation — Humans
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CONCLUSIONS

« Toxicology is intrinsically a problem in systems biology
“Pathology with numbers”
« Lots of data and information but often little knowledge

Understanding of key drives such as hERG and cardiac ion channels are not always
known

- Mutlifactoral, temporal responses involving environmental and genetic factors
Understanding and prediction demands a quantitative approach
- First generation models are coming on line
Summarising and organizing information — knowledge repositories
May fail, but in organizing the data will help us understand gaps
« Investments in systems models for safety are easier to justify
Models have both longevity and breadth of application
Used for many projects over many years

Investments in large-scale approaches can be justified because of the nature of the
problem, when it occurs and returns if successful

Huge scope for pre-competitive working in this space

Has Systems Biology finally found a true home in pharmaceutical R&D?
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