Modeling and Simulation in Systems Biology

Transition from Third to Fourth Paradigm- Data Intensive Science

Use of bionetworks to build better maps of disease

Integrated Network Maps of Cancer Sharing Data, Tools and Models

Stephen Friend MD PhD

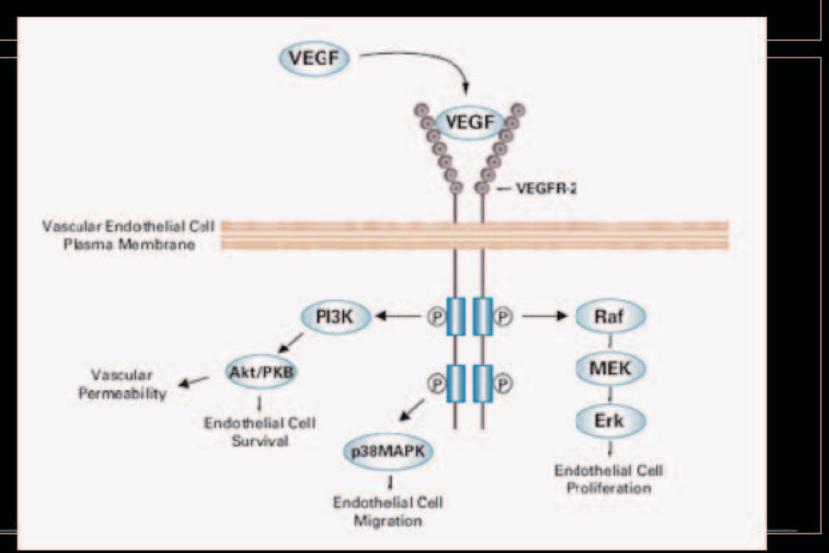
Sage Bionetworks (Non-Profit Organization) Seattle/ Beijing/ San Francisco

> PRISME May 4th, 2011

Alzheimers

Treating Symptoms v.s. Modifying Diseases Depression Will it work for me?

Familiar but Incomplete VEGFR Classical Pathway

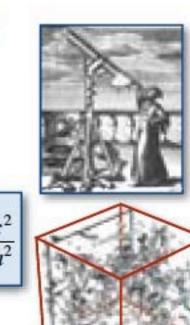


WHY "DATA INTENSIVE" SCIENCE?

Science Paradigms

 $4\pi Gp$

- Thousand years ago: science was empirical describing natural phenomena
- Last few hundred years: theoretical branch using models, generalizations
- Last few decades: a computational branch simulating complex phenomena
- Today: data exploration (eScience) unify theory, experiment, and simulation
 - Data captured by instruments or generated by simulator
 - Processed by software
 - Information/knowledge stored in computer
 - Scientist analyzes database/files using data management and statistics



"Data Intensive Science" - Fourth Scientific Paradigm

Equipment capable of generating massive amounts of data

IT Interoperability

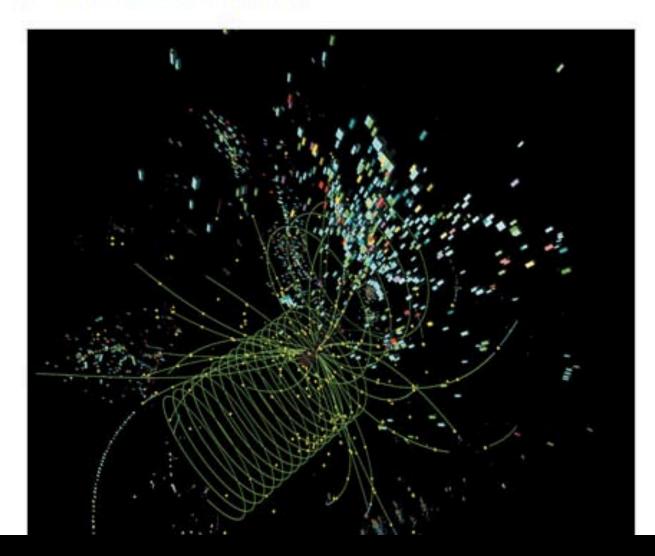
Open Information System

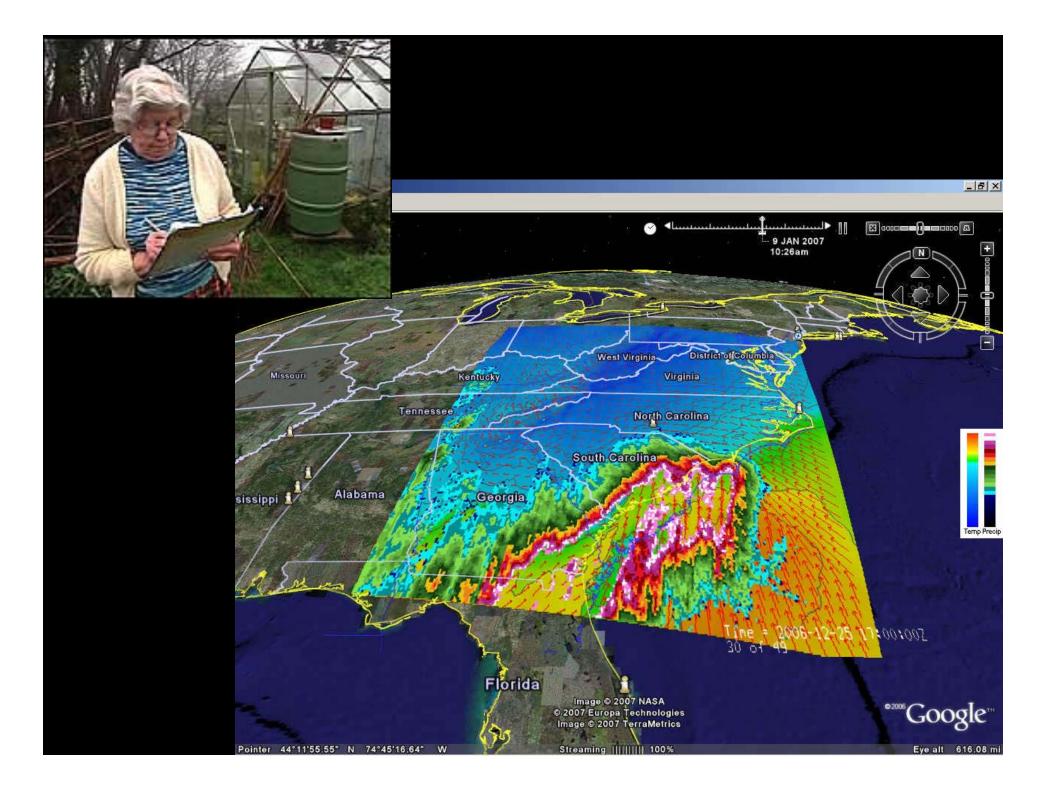
Evolving Models hosted in a Compute Space- Knowledge expert

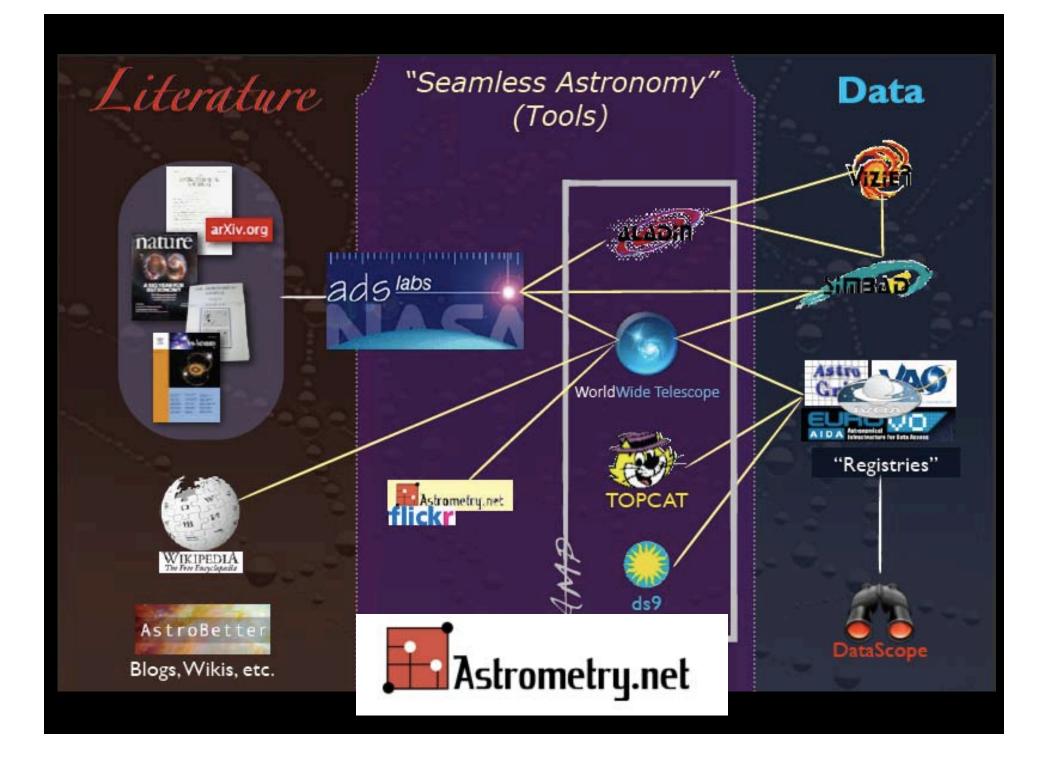
International Linear Collider Matters

Published by Clifford on February 9, 2007 in science. 3 Comments

Yes, it does matter. And it does matter:







WHY NOT USE "DATA INTENSIVE" SCIENCE TO BUILD BETTER DISEASE MAPS?

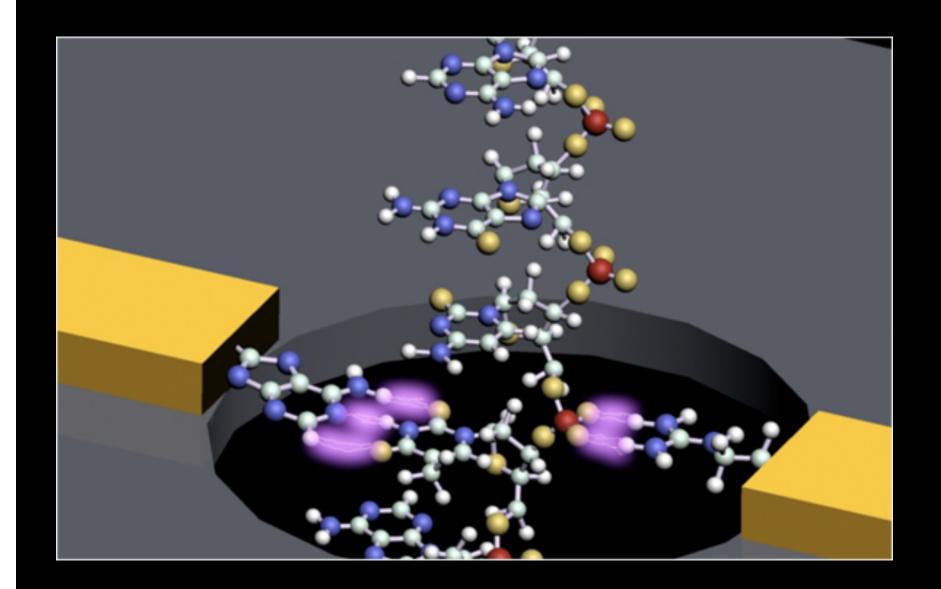
"Data Intensive Science"- "Fourth Scientific Paradigm" For building: "Better Maps of Human Disease"

Equipment capable of generating massive amounts of data

IT Interoperability

Open Information System

Evolving Models hosted in a Compute Space- Knowledge Expert

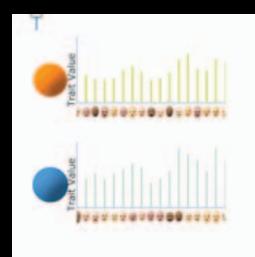


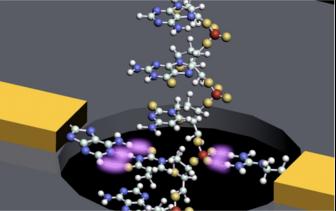
It is now possible to carry out comprehensive monitoring of many traits at the population level

Monitor disease and molecular traits in populations

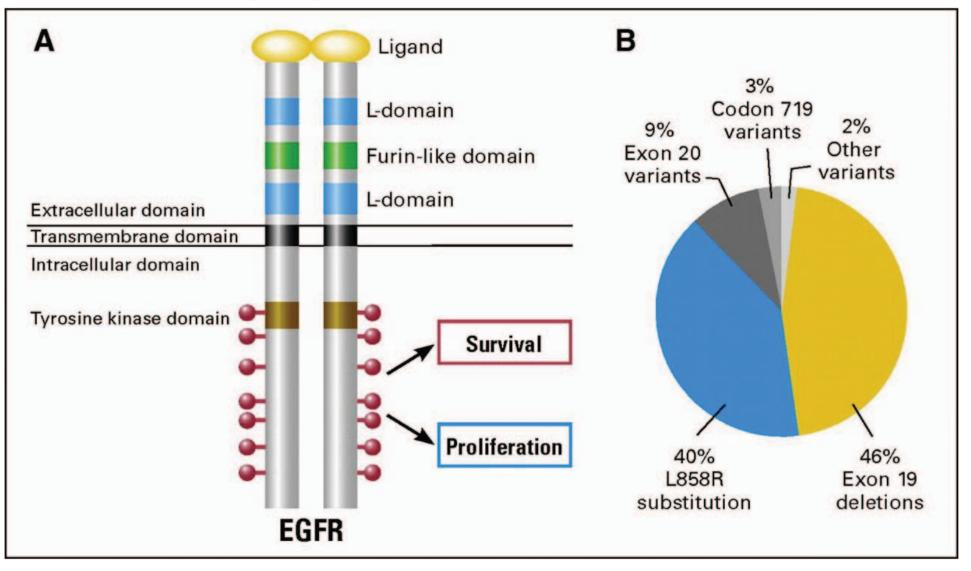
Putative causal gene

Disease trait

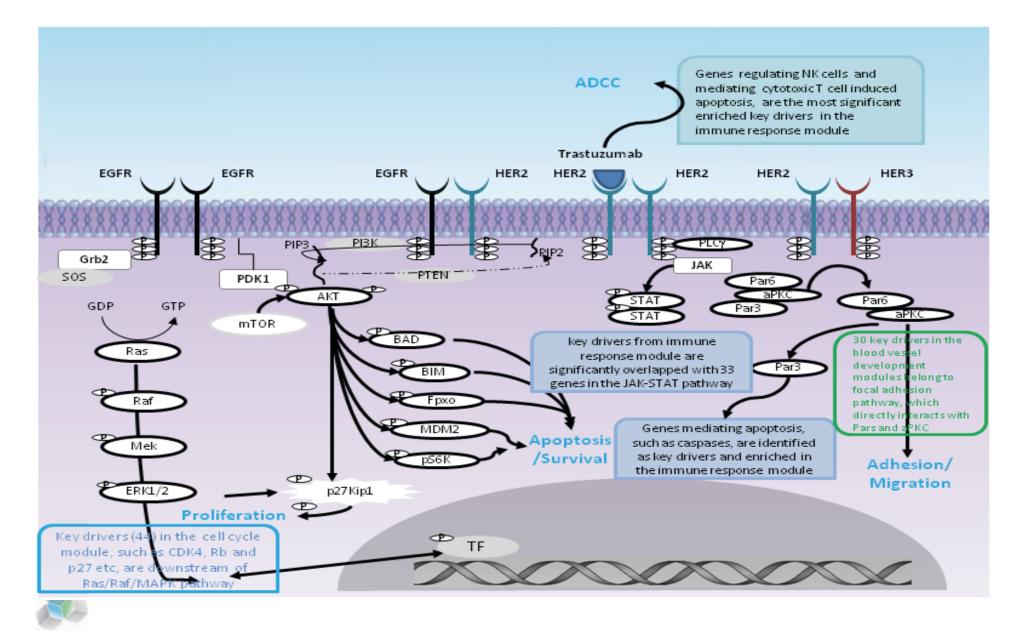


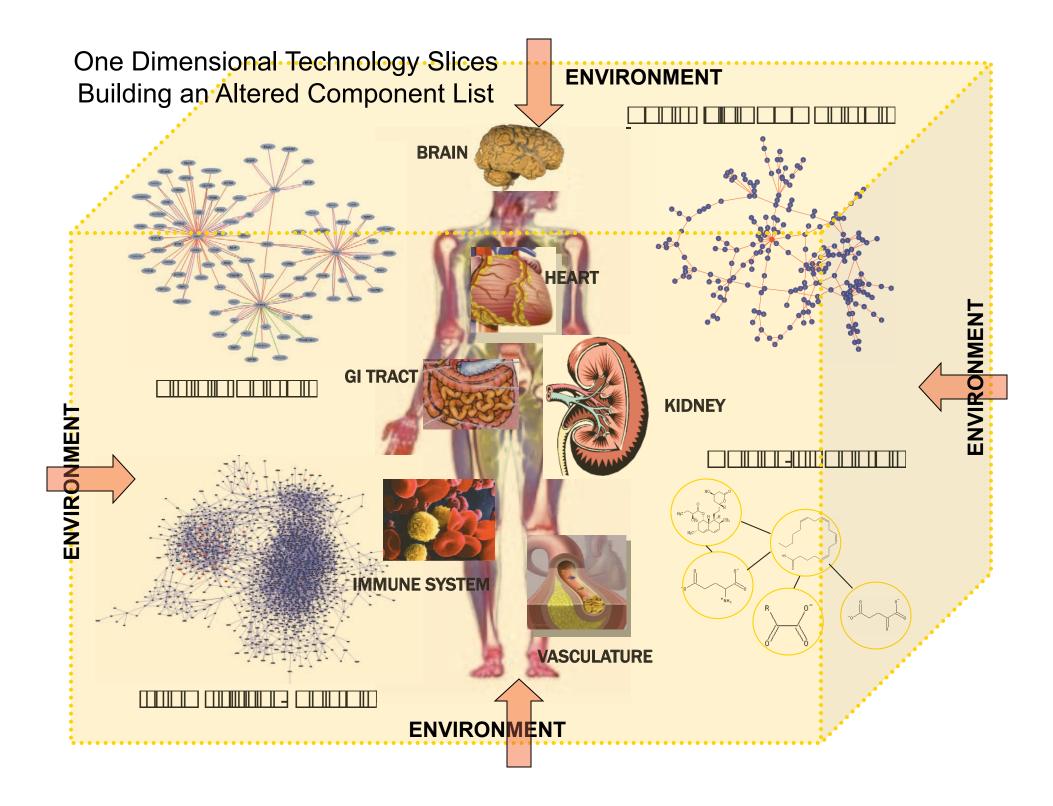


Personalized Medicine 101: Capturing Single bases pair mutations = ID of responders



Cancer Complexity: Overlapping of EGFR and Her2 Pathways





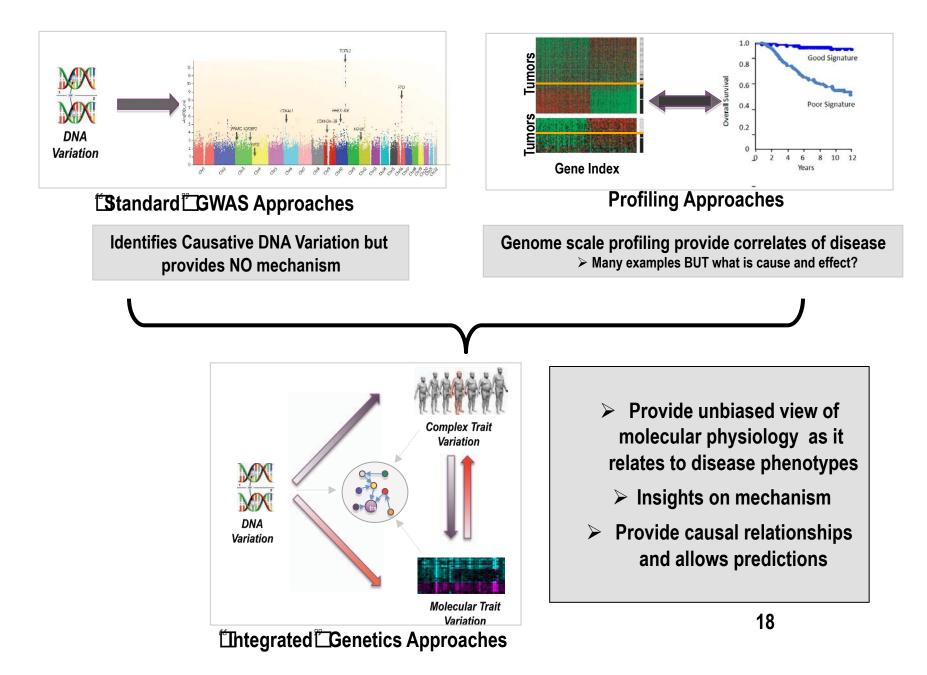
The Rosetta Integrative Genomics Experiment Generation, assembly, and integration of data to build models that predict clinical outcome

DNA Variation Maging Gene Kyrression Predictive Models Pharmacogeno mics Proteomics

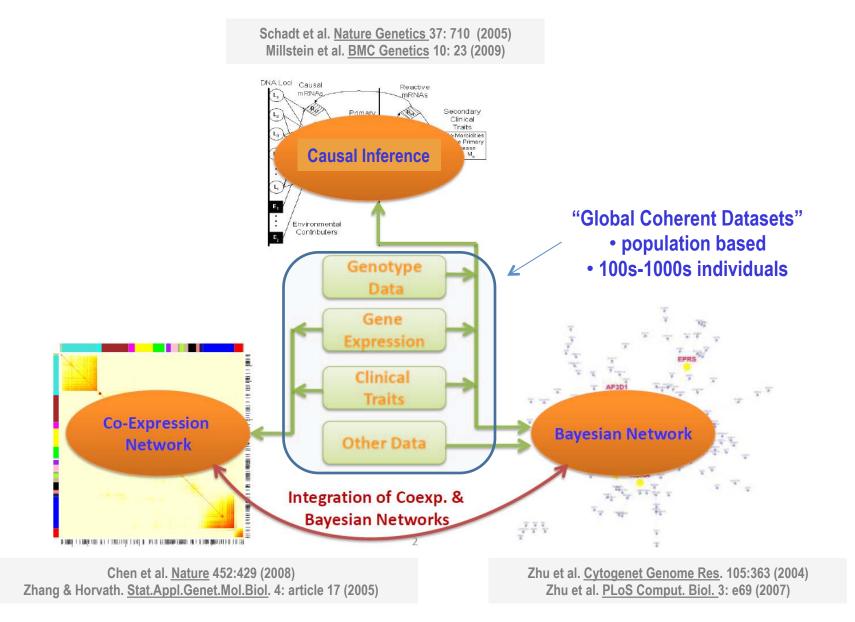
Merck Inc. Co. 5 Year Program Based at Rosetta Driven by Eric Schadt Total Resources >\$150M

- Generate data need to build
- bionetworks
- Assemble other available data useful for building networks
- Integrate and build models
- Test predictions
- Develop treatments
- Design Predictive Markers

How is genomic data used to understand biology?

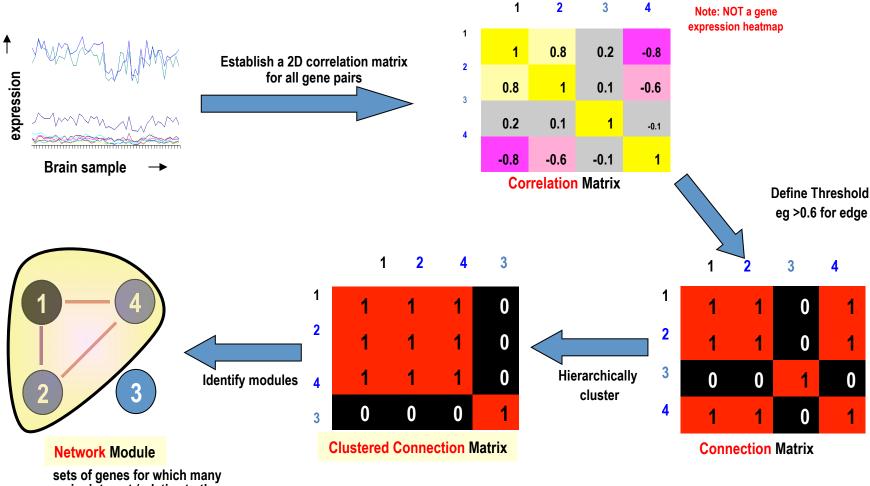


Integration of Genotypic, Gene Expression & Trait Data



Constructing Co-expression Networks

Start with expression measures for ~13K genes most variant genes across 100-150 samples



sets of genes for which many pairs interact (relative to the total number of pairs in that set)

Gene Co-Expression Network Analysis

Define a Gene Co-expression Similarity

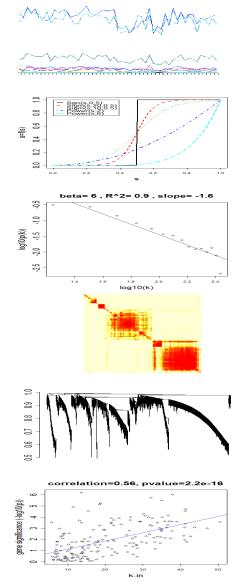
Define a Family of Adjacency Functions

Determine the AF Parameters

Define a Measure of Node Distance

Identify Network Modules (Clustering)

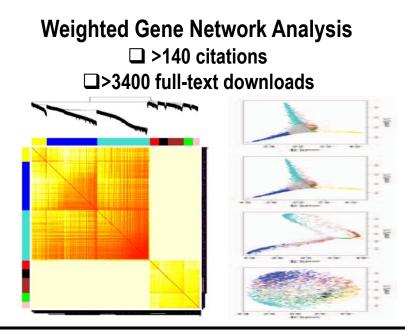
Relate the Network Concepts to External Gene or Sample Information



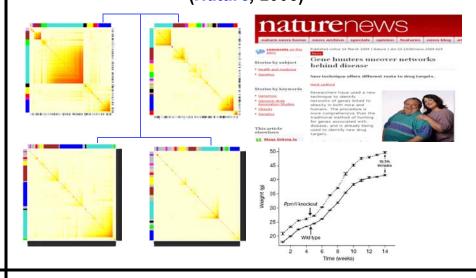
Zhang B, Horvath S. Stat Appl Genet Mol Biol 2005

21

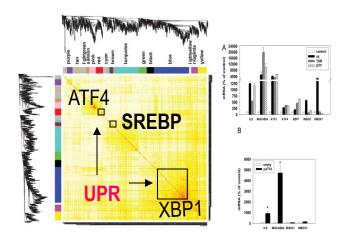
Gene Co-expression Network Analysis



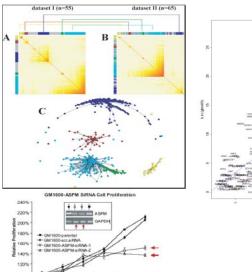
Novel gene network causal for D&O (*Nature*, 2008)



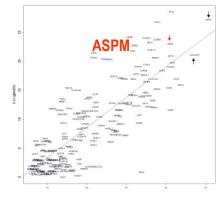
Novel pathways and gene targets in Atherosclerosis (*PNAS*, 2006)



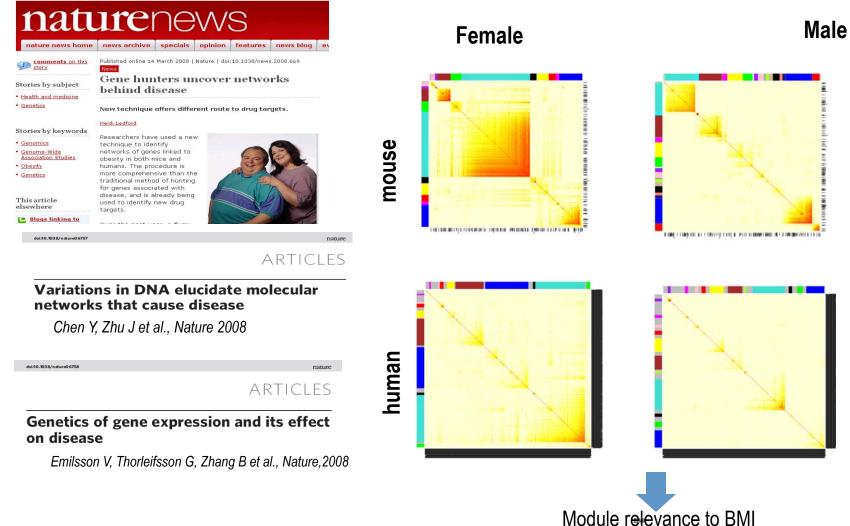
Novel oncogene in brain cancer (PNAS, 2006)



Day2 Day3 Day4 Day6 Day7

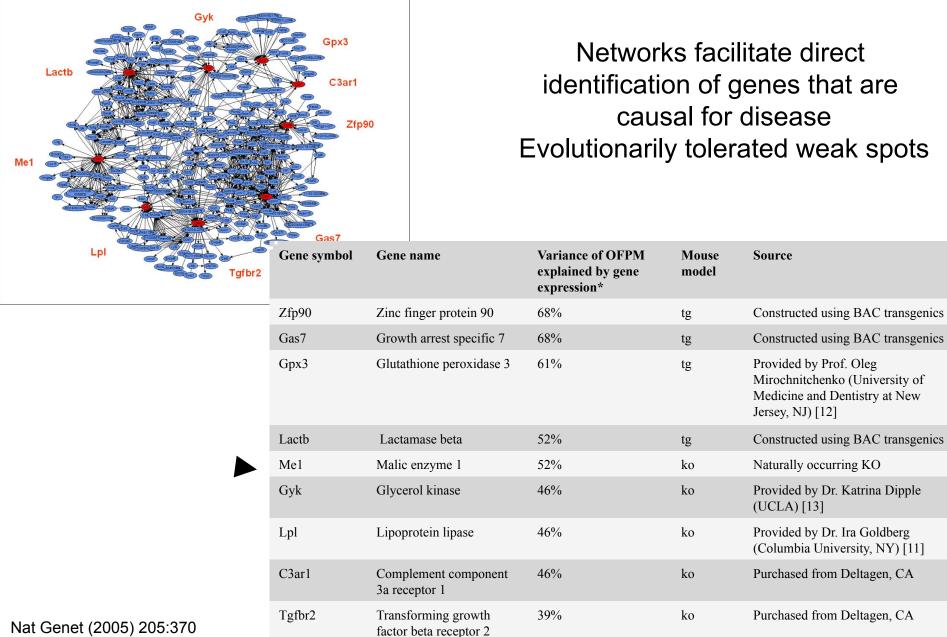


A macrophage-enriched metabolic network (MEMN) associated with obesity & diabetes



how we have the relation of th

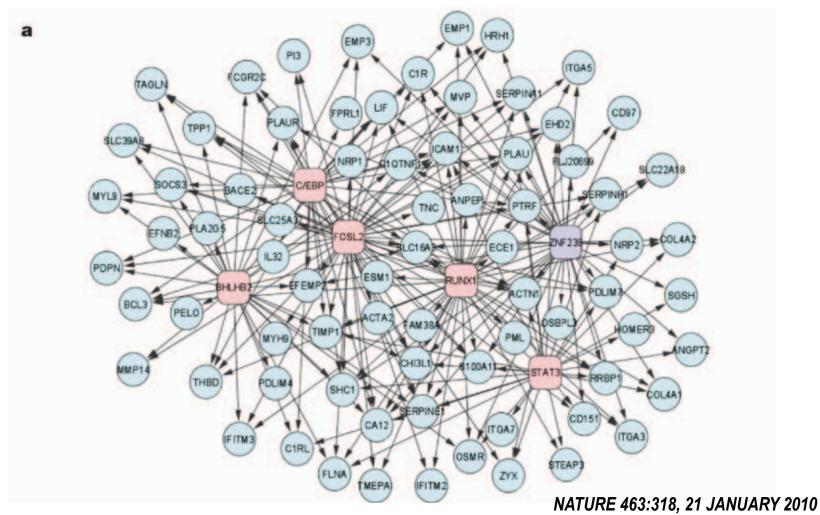
Preliminary Probabalistic Models- Rosetta /Schadt

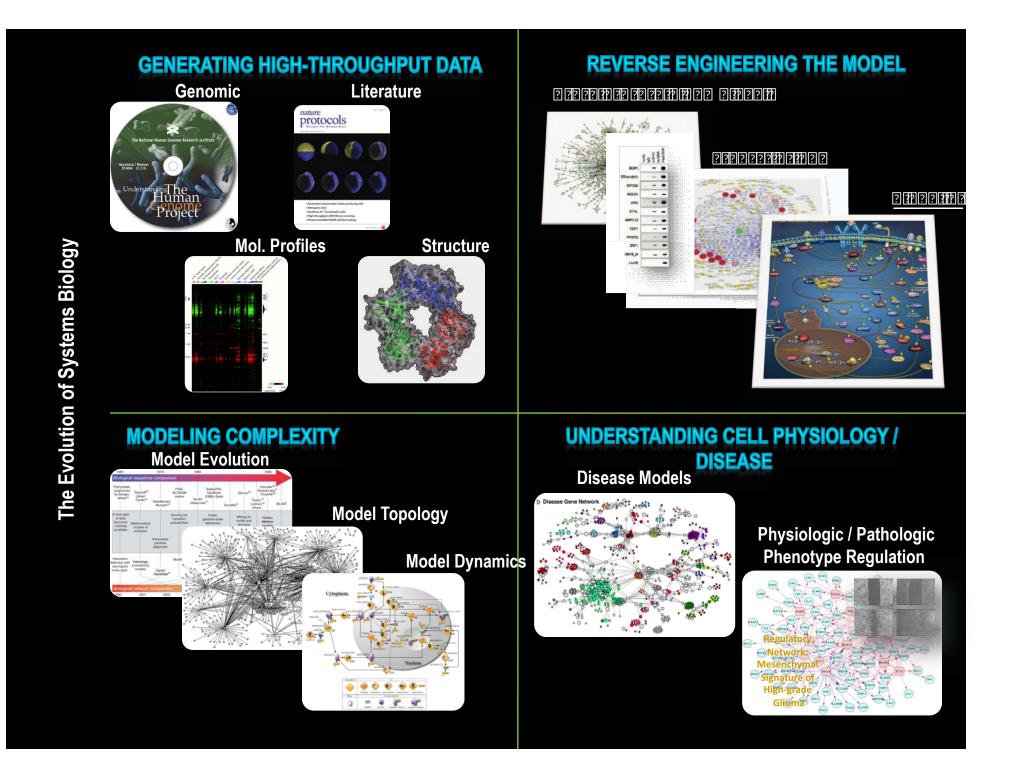


Nat Genet (2005) 205:370

The transcriptional network for mesenchymal transformation of brain tumours

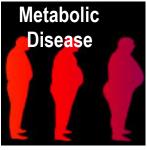
Maria Stella Carro¹*{, Wei Keat Lim^{2,3}*{, Mariano Javier Alvarez^{3,4}*, Robert J. Bollo⁸, Xudong Zhao¹, Evan Y. Snyder⁹, Erik P. Sulman¹⁰, Sandrine L. Anne¹{, Fiona Doetsch⁵, Howard Colman¹¹, Anna Lasorella^{1,5,6}, Ken Aldape¹², Andrea Califano^{1,2,3,4} & Antonio lavarone^{1,5,7}





Extensive Publications now Substantiating Scientific Approach Probabilistic Causal Bionetwork Models

 >60 Publications from Rosetta Genetics Group (~30 scientists) over 5 years including high profile papers in PLoS Nature and Nature Genetics



"Genetics of gene expression surveyed in maize, mouse and man." <u>Nature</u>. (2003) "Variations in DNA elucidate molecular networks that cause disease." <u>Nature</u>. (2008) "Genetics of gene expression and its effect on disease." <u>Nature</u>. (2008) "Validation of candidate causal genes for obesity that affect..." <u>Nat Genet</u>. (2009) Plus 10 additional papers in Genome Research, PLoS Genetics, PLoS Comp.Biology, etc

> "Identification of pathways for atherosclerosis." <u>Circ Res</u>. (2007) "Mapping the genetic architecture of gene expression in human liver." <u>PLoS Biol</u>. (2008)

> > Plus 5 additional papers in Genome Res., Genomics, Mamm.Genome

Bone

"Integrating genotypic and expression data ...for bone traits..." <u>Nat Genet</u>. (2005) "..approach to identify candidate genes regulating BMD..." <u>J Bone Miner Res</u>. (2009) "An integrative genomics approach to infer causal associations ..." <u>Nat Genet</u>. (2005) "Increasing the power to detect causal associations... "PLoS Comput Biol. (2007) "Integrating large-scale functional genomic data ..." <u>Nat Genet.</u> (2008) Plus 3 additional papers in PLoS Genet., BMC Genet. Society for Pharmacology and Experimental Therapeutics

HE HEPATIC EFFECTS OF FLUTAMIDE IN RATS: A I NITH CLASSICAL ARYL HYDROCARBON RECEPTOR ATYPICAL CYP1A INDUCERS^S

dney D. Ne Michelle Ca Michelle Ca Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: A resource for investigations into drug disposition

Chemistry, Un ubsidiary of Me

> K. BLEASBY^{1,*}, J. C. CASTLE^{2,*}, C. J. ROBERTS³, C. CHENG², W. J. BAILEY⁴, J. F. SINA⁴, A. V. KULKARNI², M. J. HAFEY¹, R. EVERS¹, J. OPEN @ ACCESS Freely available online

¹Department of D ²Department of In Inpharmatics (a s)
PPARα siRNA–Treated Expression Profiles Uncover the Causal Sufficiency Network for Compound-Induced Liver Hypertrophy

> Xudong Dai^{1*}, Angus T. De Souza², Hongyue Dai¹, David L. Lewis³, Chang-kyu Lee¹, Andy G. Spencer³, Hans Herweijer³, Jim E. Hagstrom³, Peter S. Linsley⁴, Douglas E. Bassett¹, Roger G. Ulrich², Yudong D. He^{1*}

1 Informatics, Rosetta of America, 3 Mirus Bi

OPEN 🗟 ACCESS Freely available online

PLOS BIOLOGY

Uncovering par Developing me their sufficience

Mapping the Genetic Architecture of Gene Expression in Human Liver

Eric E. Schadt¹[®], Cliona Molony¹[®], Eugene Chudin¹[®], Ke Hao¹, Xia Yang¹, Pek Y. Lum¹, Andrew Kasarskis¹, Bin Zhang¹, Susanna Wang¹, Christine Suver¹, Jun Zhu¹, Joshua Millstein¹, Solveig Sieberts¹, John Lamb¹, Debraj GuhaThakurta¹, Jonathan Derry¹, John D. Storey^{1,2,3}, Iliana Avila-Campillo¹, Mark J. Kruger¹, Jason M. Johnson¹, Carol A. Rohl¹, Atila van Nas⁶, Margarete Mehrabian^{4,5}, Thomas A. Drake⁷, Aldons J. Lusis^{4,5,6}, Ryan C. Smith¹, F. Peter Guengerich^{8,9}, Stephen C. Strom¹⁰, Erin Schuetz¹¹, Thomas H. F

Toxicologic Pathology

Investigating the Mechanistic Basis for Hepatic Toxicity Induced by an Experimental Chemokin Receptor 5 (CCR5) Antagonist Using a Compendium of Gene Expression Profiles Paul D. Cornwell and Roger G. Ulrich *Toxicol Pathol* 2007; 35; 576 DOI: 10.1080/01926230701383194

List of Influential Papers in Network Modeling

Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks

Xia Yang¹, Joshua L Deignan¹, Hongxiu Qi¹, Jun Zhu², Su Qian³, Judy Zhong², Gevork Torosyan⁴, Sana Majid⁴, Brie Falkard⁴, Robert R Kleinhanz², Jenny Karlsson⁵, Lawrence W Castellan¹, Sheena Mumick³, Kai Wang², Tao Xie², Michael Coon², Chunsheng Zhang², Daria Estrada-Smith⁴, Charles R Farber¹, Susanna S Wang⁴, Atila van Nas⁴, Anatole Ghazalpour⁴, Bin Zhang², Douglas J MacNeil³, John R Lamb³, Katrina M Dipple⁴, Marc L Reitman⁶, Margarete Mehrabian¹, Pek Y Lum², Eric E Schadt², Aldons J Lusis^{1,4} & Thomas A Drake⁶

Integrative Modeling Defines the Nova Splicing-Regulatory Network and Its Combinatorial Controls

Chaolin Zhang,* Maria A. Frias, Aldo Mele, Matteo Ruggiu, Taesun Eom, Christina B. Marney, Huidong Wang, Donny D. Licatalosi, John J. Fak, Robert B. Darnell*

The transcriptional network for mesenchymal transformation of brain metumours

^{int§}Maria Stella Carro¹^a†, Wei Keat Lim^{2,3}^a†, Mariano Javier Alvarez^{3,4}^a, Robert J. Bollo⁸, Xudong Zhao¹, ^{Thu}Evan Y. Snyder⁹, Erik P. Sulman¹⁰, Sandrine L. Anne¹†, Fiona Doetsch⁵, Howard Colman¹¹, Anna Lasorella^{1,5,6}, ^{at} Ken Aldape¹², Andrea Califano^{1,2,3,4} & Antonio Iavarone^{1,5,7}

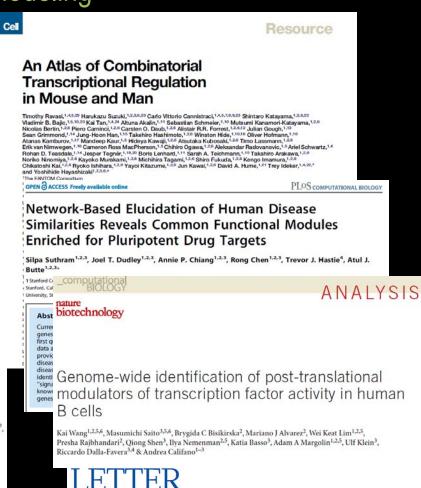
Variations in DNA elucidate molecular

Co Yanqing Chen¹*, Jun Zhu¹*, Pek Yee Lum¹, Xia Yang¹, Shirly Pinto², Douglas J. MacNeil², Chunsheng Zhang¹,
 John Lamb¹, Stephen Edwards¹, Solveig K. Sieberts¹, Amy Leonardson¹, Lawrence W. Castellini³, Susanna Wang³,
 Marie-France Champy⁶, Bin Zhang¹, Valur Emilsson¹, Sudheer Doss³, Anatole Ghazalpour³, Steve Horvath⁴,
 Thomas A. Drake⁵, Aldons J. Lusis^{3,4} & Eric E. Schadt¹

Identifyir forward Rewiring of Genetic Networks in Informati Atternation Response to DNA Damage

loci and t segregat relations Iactamas Dorothea Fiedler,^{7,8} Janusz Dutkowski,¹ Aude Guénolé,⁹ Haico van Attikum,⁹ strength: Kevan M. Shokat,^{7,8} Richard D. Kolodner,^{5,1,10} Won-Ki Huh,⁴ Ruedi Aebersold,⁶ support 1 Michael-Christopher Keogh,^{2*} Nevan J. Krogan,^{7*} Trey Ideker^{1,3,10*}

Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They are very effective at identifying DNA repair pathways, highlighting new damage-dependent roles for the Slt2 kinase, Pph3 phosphatase, and histone variant Htz1. The data also reveal that protein complexes are generally stable in response to perturbation, but the functional relations between these complexes are substantially reorganized. Differential networks chart a new type of genetic landscape that is invaluable for manping cellular responses to stimuli



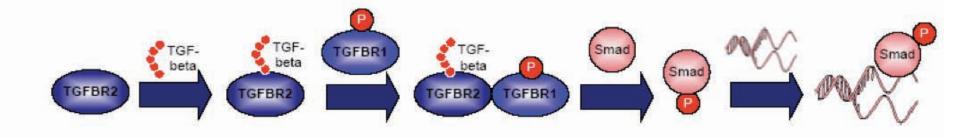
doi:10.1038/nature09

A *trans*-acting locus regulates an anti-viral expression network and type 1 diabetes risk

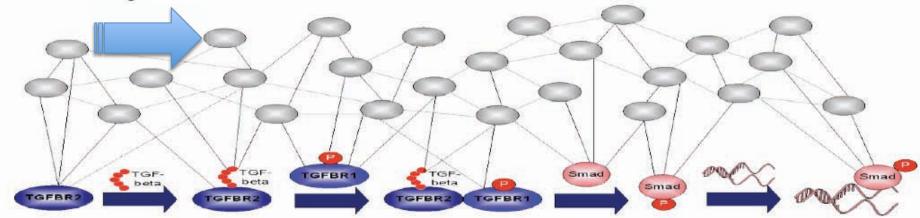
Matthias Heinig^{1,2*}, Enrico Petretto^{3,4*}, Chris Wallace⁵, Leonardo Bottolo^{3,4}, Maxime Rotival⁶, Han Lu³, Yoyo Li³, Rizwan Sarwa Sarah R. Langley³, Anja Bauerfeind¹, Oliver Hummel¹, Young–Ae Lee^{1,7}, Svetlana Paskas¹, Carola Rintisch¹, Kathrin Saar¹, Jason Cooper⁵, Rachel Buchan³, Elizabeth E. Gray⁸, Jason G. Cyster⁸, Cardiogenics Consortium⁴, Jeanette Erdmann⁹, Christian Hengstenberg¹⁰, Seraya Maouche⁶, Willem H. Ouwehand^{11,12}, Catherine M. Rice¹², Nilesh J. Saman¹³, Heribert Schunkert⁹, Alison H. Goodall¹³, Herbert Schulz¹, Helge G. Roider², Martin Vingron², Stefan Blankenberg¹⁴, Thomas Münzel¹⁴, Tanja Zeller¹⁴, Silke Szymczak¹⁵, Andreas Ziegler¹⁵, Laurence Tiret⁶, Deborah J. Smyth⁵, Michal Pravenec¹⁶, Jimothy J. Aitman³, Francois Cambien⁶, David Clayton⁵, John A. Todd⁵, Norbert Hubner^{1,17} & Stuart A. Cook^{3, 18}

50 network papers http://sagebase.org/research/resources.php

The way we like to think:



The way it is:



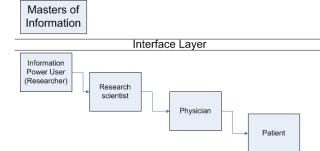
(Eric Schadt)

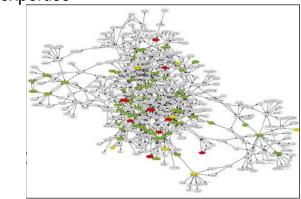
What's needed to play/compete in the information space?

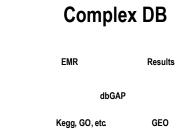
- Three critical components:
 - Big databases, organized (connected) to facilitate integration and model building
 - GE Health, IBM, Microsoft, Google, and so on

- Data integration and construction of predictive models
 - Computational, math/stat, high-performance computing, and biological expertise
 - Significant high-performance computing resources

Tools and educational resources to translate complex material to a hierarchy of of "users" and ways to cite model-publish
 3) Masters of







1)

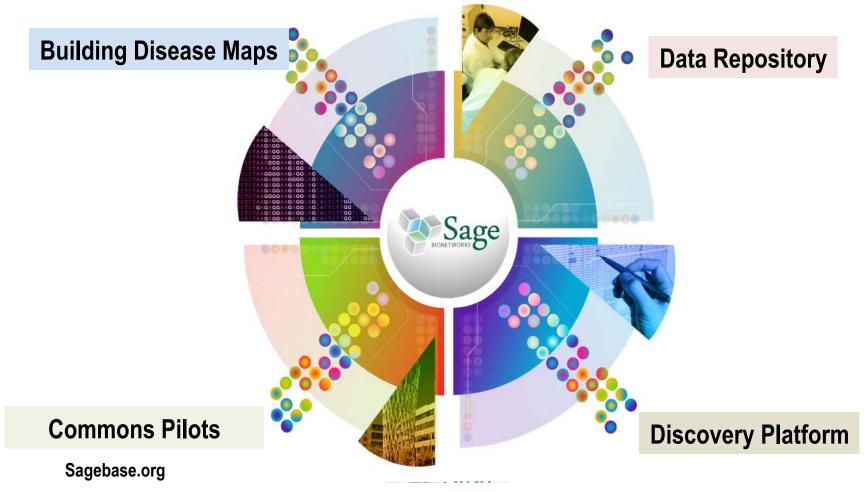
2)

Recognition that the benefits of bionetwork based molecular models of diseases are powerful but that they **require significant resources**

Appreciation that it will **require decades** of evolving representations as real complexity emerges and needs to be integrated with therapeutic interventions

Sage Mission

Sage Bionetworks is a non-profit organization with a vision to create a "commons" where integrative bionetworks are evolved by contributor scientists with a shared vision to accelerate the elimination of human disease



Sage Bionetworks Strategy: Integrate with Communities of Interest

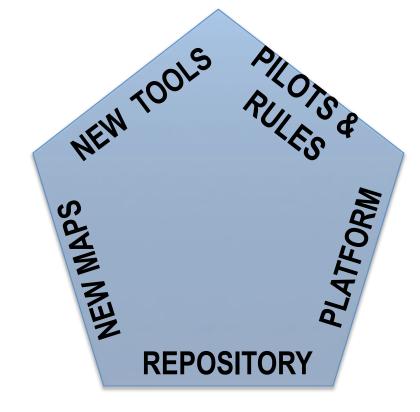
Map Users-Disease Map and Tool Users-(Scientists, Industry, Foundations, Regulators...)

Platform Builders – Sage Platform and Infrastructure Builders-(Academic Biotech and Industry IT Partners...)

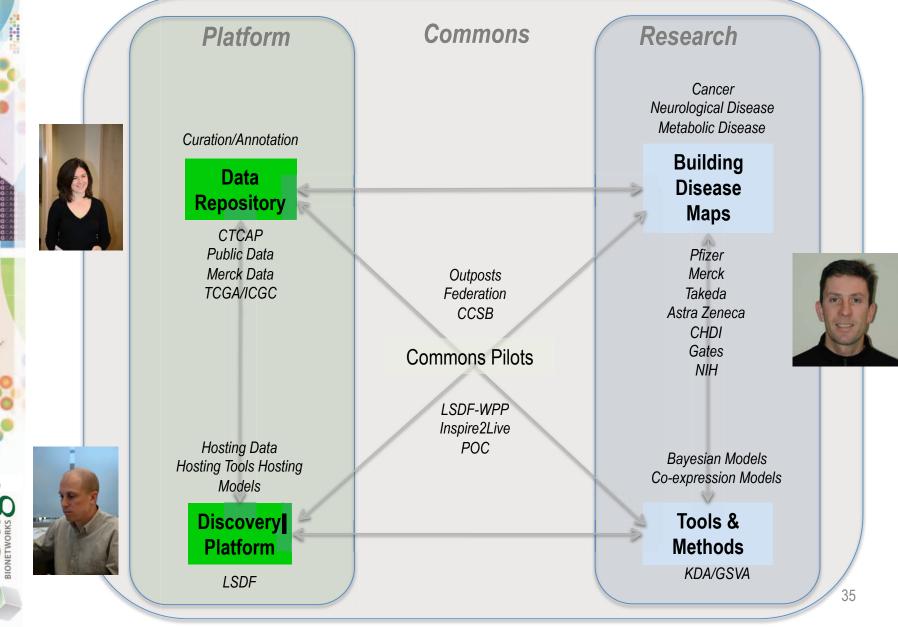
> Barrier Breakers-Data Sharing Barrier Breakers-(Patients Advocates, Governance and Policy Makers, Funders...)

Data Generators-Data Tool and Disease Map Generators-(Global coherent data sets, Cytoscape, Clinical Trialists, Industrial Trialists, CROs...)

> Commons Pilots-Data Sharing Commons Pilots-(Federation, CCSB, Inspire2Live....)



Sage Bionetworks Functional Organization



Sage Bionetworks Collaborators

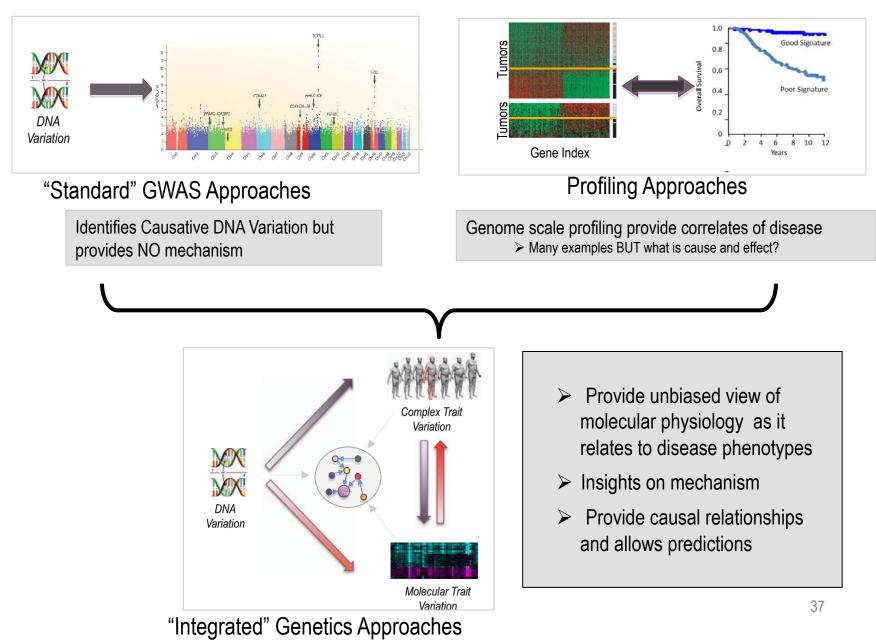
- Pharma Partners
 - Merck, Pfizer, Takeda, Astra Zeneca, Amgen
- Foundations
 - CHDI, Gates Foundation
- Government
 - NIH, LSDF
- Academic
 - Levy (Framingham)
 - Rosengren (Lund)
 - Krauss (CHORI)
- Federation
 - Ideker, Califarno, Butte, Schadt

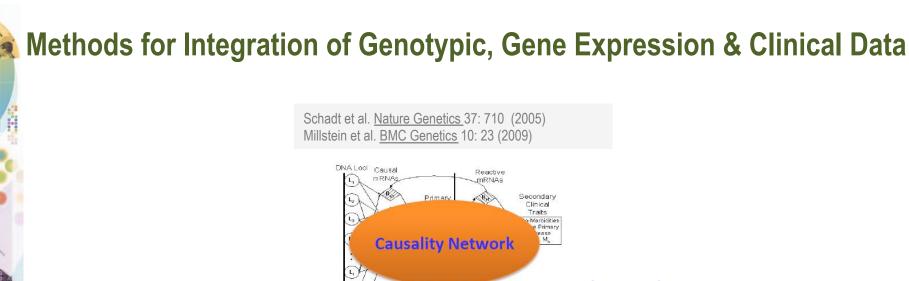
RED HUTCHINSON

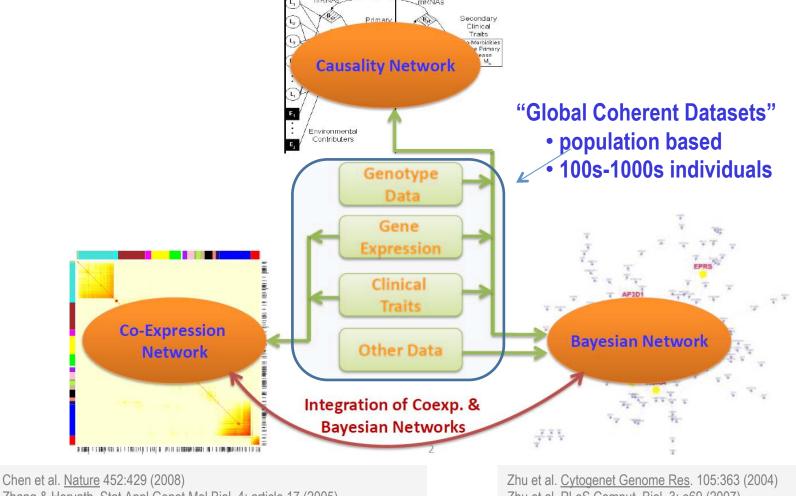
A LIFE OF SCIENCE

Sage

Building Integrated Models







Zhang & Horvath. Stat.Appl.Genet.Mol.Biol. 4: article 17 (2005)

Monte Service Service

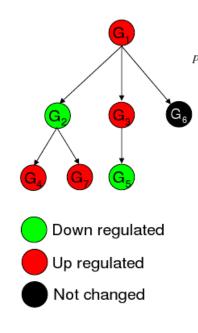
Zhu et al. PLoS Comput. Biol. 3: e69 (2007)

Bayesian Networks

Bayesian Networks

(does Gene A control Gene B?)

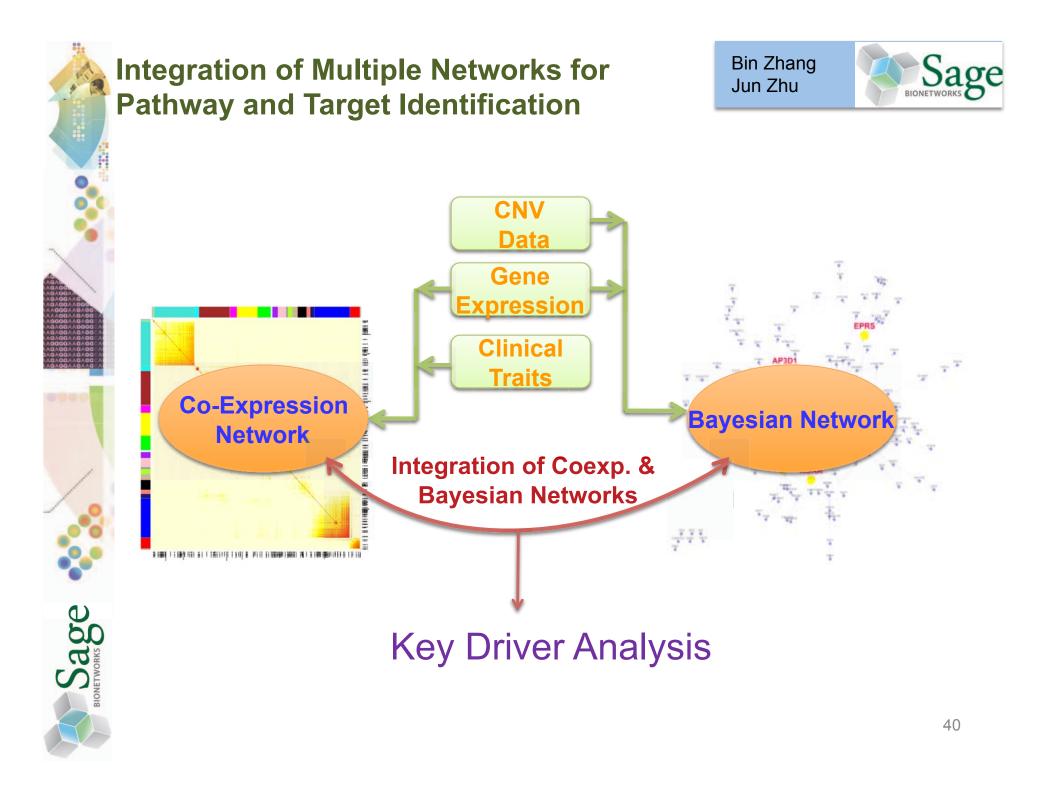
- Captures the stochastic nature of biological system
- Probability based
- Can include priors such as causality information
- PREDICTIVE: CAN be used to predict outcomes or perturbations



 BN method provides a way to decompose a joint probability distribution based on conditional independence

$$\begin{split} p(Network) &= p(G_1, G_2, G_3, G_4, G_5, G_6, G_7) \\ &= p(G_1)p(G_2 \mid G_1)p(G_3 \mid G_1)p(G_6 \mid G_1)p(G_4 \mid G_2)p(G_7 \mid G_2)p(G_5 \mid G_3) \end{split}$$

- For a given network, we find the maximum likelihood of the network given the observed data D, p(D/Network)
- Training Bayesian Networks
 - We want to search the space of all networks to find the optimal one
 - Calculate probability tables associated with the networks
- To find the best network we perform the search 1,000 times using random seeds
 - Computationally intense procedure
 - Presently runs on a 6000+ CPU (IBM Blade) Cluster
- Common features are then extracted (e.g., connections seen in > 30% of the networks are extracted) and probability tables are updated



Key Driver Analysis Jun Zhu Justin Guinney Gene Set (G) Network(N) Define a subnetwork (N_G) Yes Are the nodes of N_G in the set G? No Search each node's neighborhoods for the one most enriched for the list Dynamic NGH Search Static NGH Search Find each node's neighborhood Identify candidate drivers by NBH Identify candidate drivers by FET Identify global & local drivers Identify global & local drivers

Promote MEN outliers as global Output key drivers & subnetwork Visualize key drivers & subnetwork (via Cytoscape plugin)

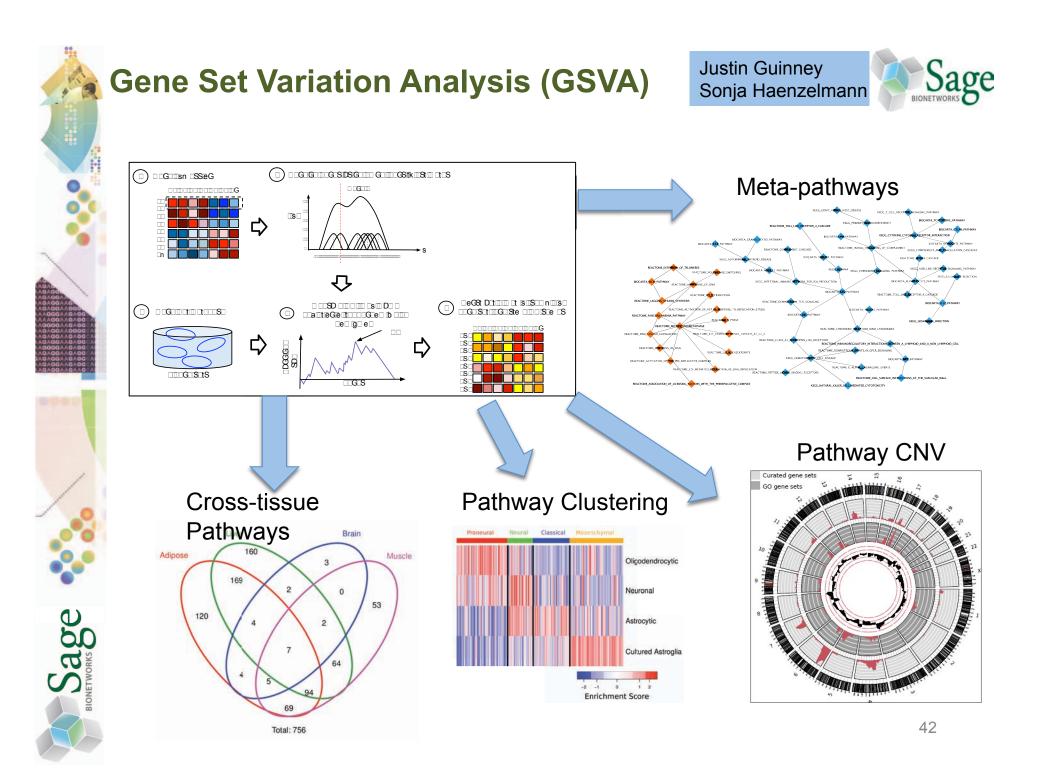
http://sagebase.org/research/tools.php 41

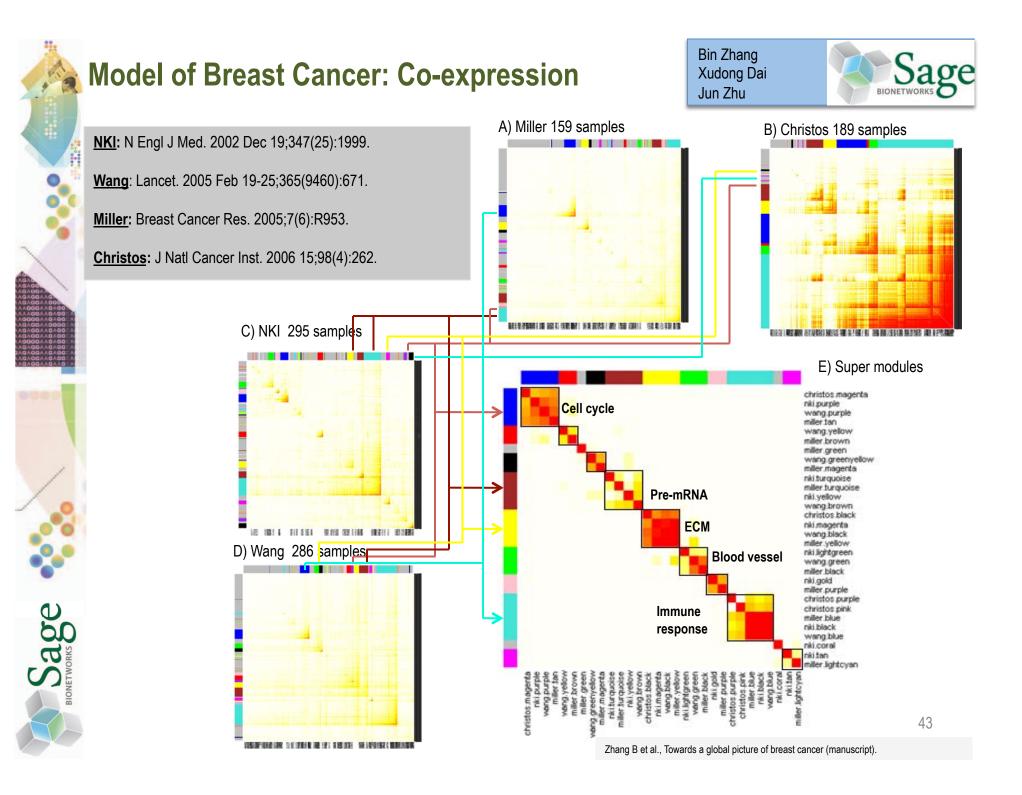
Gene in the list

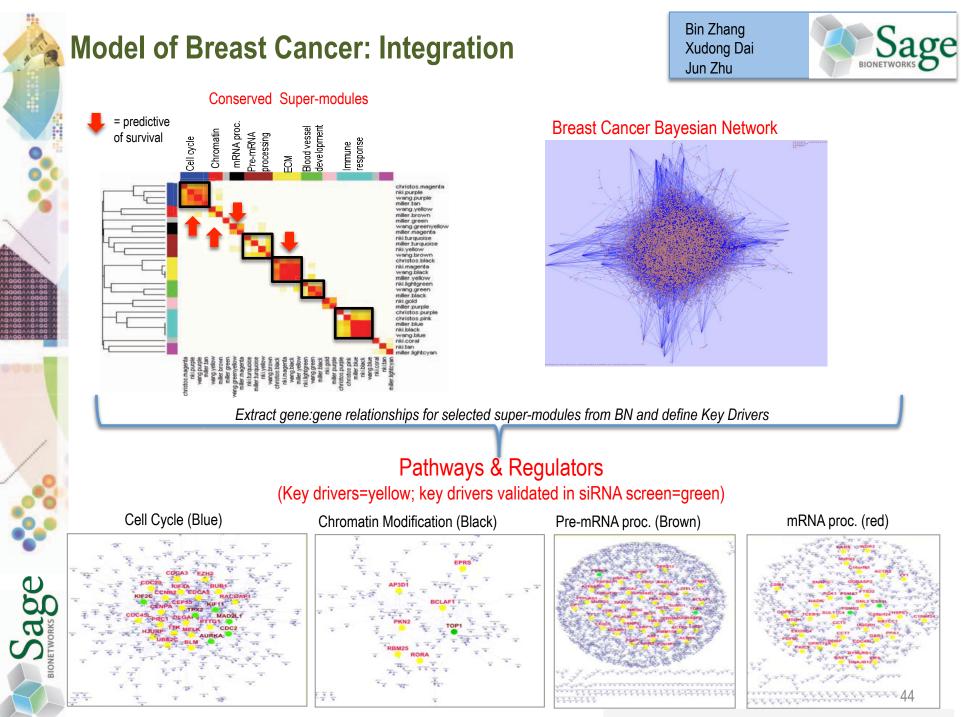
3

Key driver

Bin Zhang



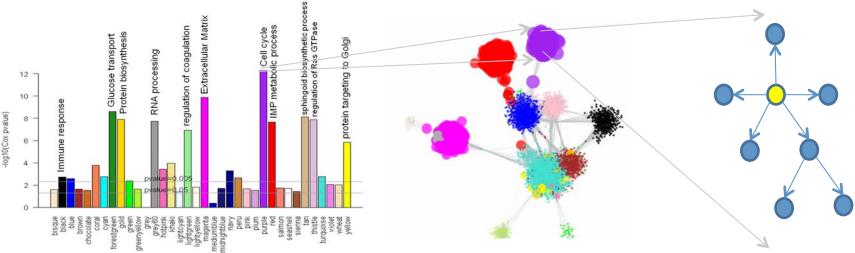




Zhang B et al., Key Driver Analysis in Gene Networks (manuscript)

Model of Breast Cancer: Mining

Co-expression sub-networks predict survival; KDA identifies drivers



Co-expression modules correlate with survival

Map to Bayesian Network

Define Key Drivers

Species: Human

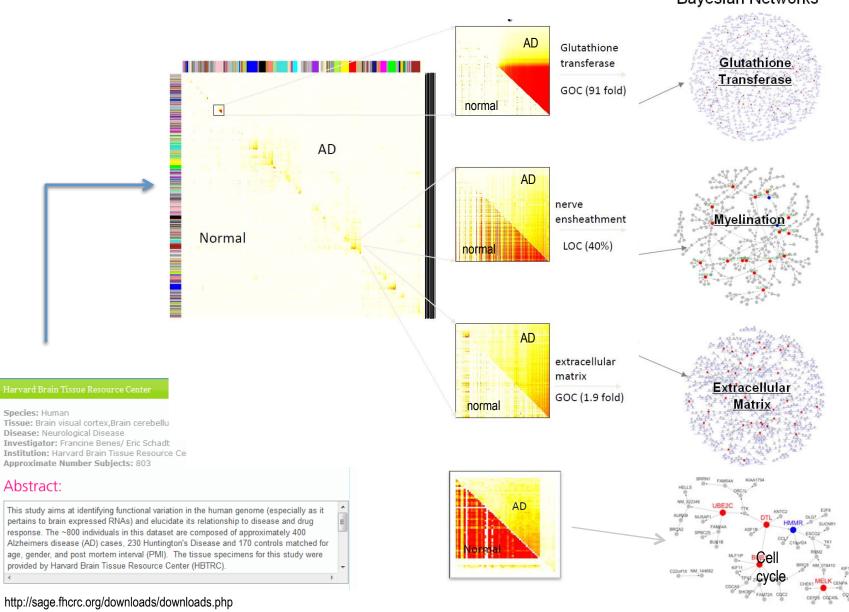
Abstract:

4

Model of Alzheimer's Disease

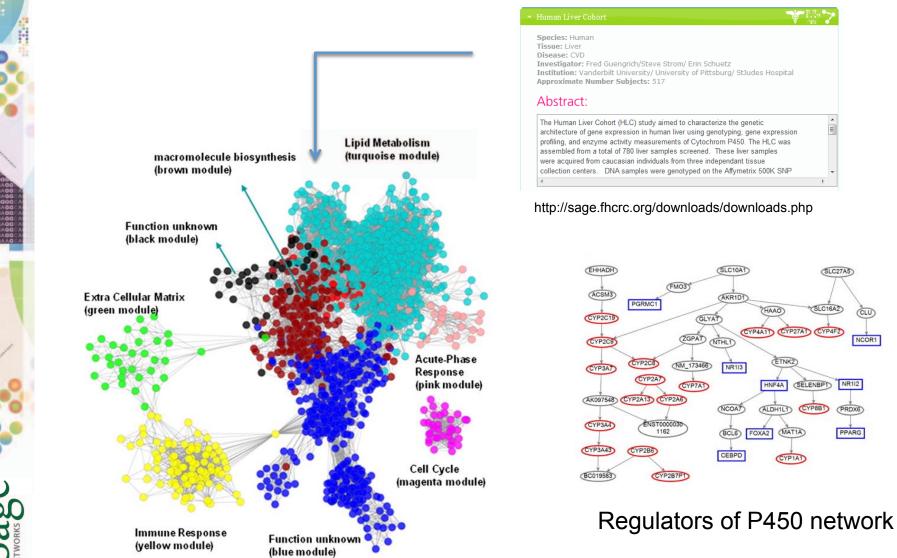
Bin Zhang Jun Zhu

Bayesian Networks



0

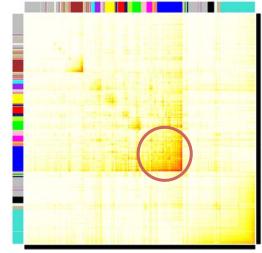
Liver Cytochrome P450 Regulatory Network Models



Yang et al. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. 2010. Genome Research 20:1020.

New Type II Diabetes Disease Models

Global expression data from 64 human islet donors



Blue module: 3000 genes Associated with Type 2 diabetes Elevated HbA1c Reduced insulin secretion 340 genes in islet-specific open chromatin regions

168 overlapping genes, which have

- Higher connectivity
- Markedly stronger association with
 - Type 2 diabetes
 - Elevated HbA1c
 - Reduced insulin secretion
- Enrichment for beta-cell transcription factors and exocytotic proteins

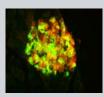
New Type II Diabetes Disease Models

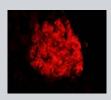
- Search across 1300 datasets in MetaGEO at Sage for similar expression profiles Top hit: Islet dedifferentiation study where the 168 genes were upregulated in mature islets and downregulated in dedifferentiated islets (*Kutlu et al., Phys Gen 2009*)
- Analyses of expression-SNPs and clinical SNPs as well as Causal Inference Test
- Identification of candidate key genes affecting beta-cell differentiation and chromatin

Working hypothesis:

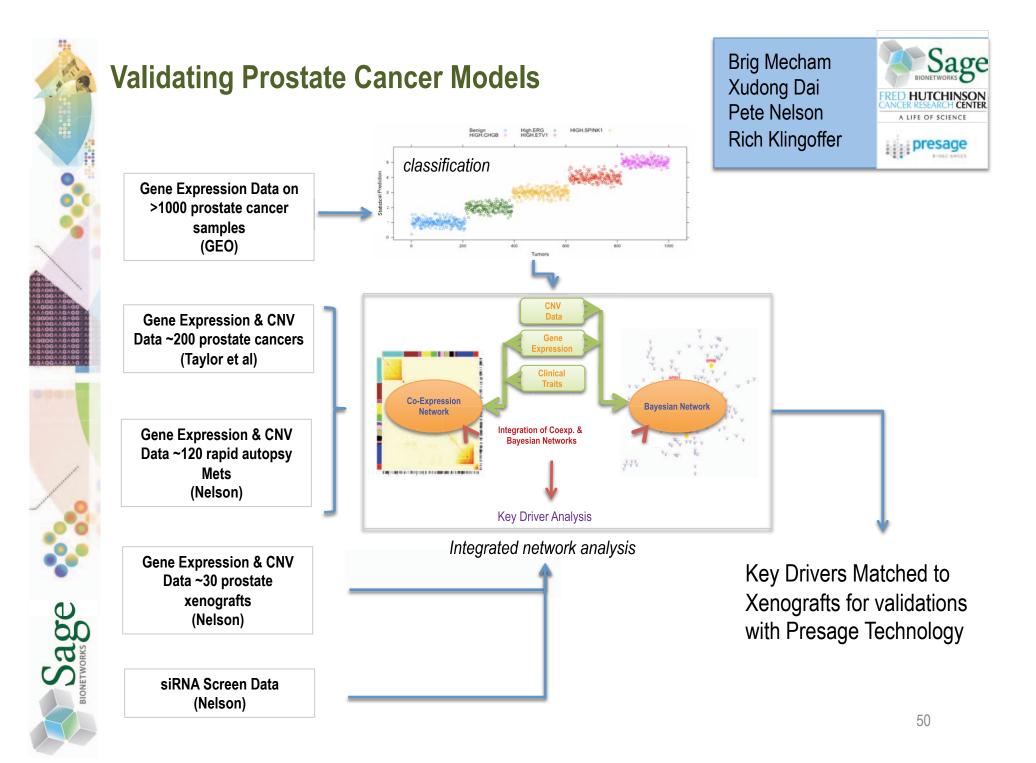
Normal beta-cell: open chromatin in islet-specific regions, high expression of beta-cell transcription factors, differentiated beta-cells and normal insulin secretion

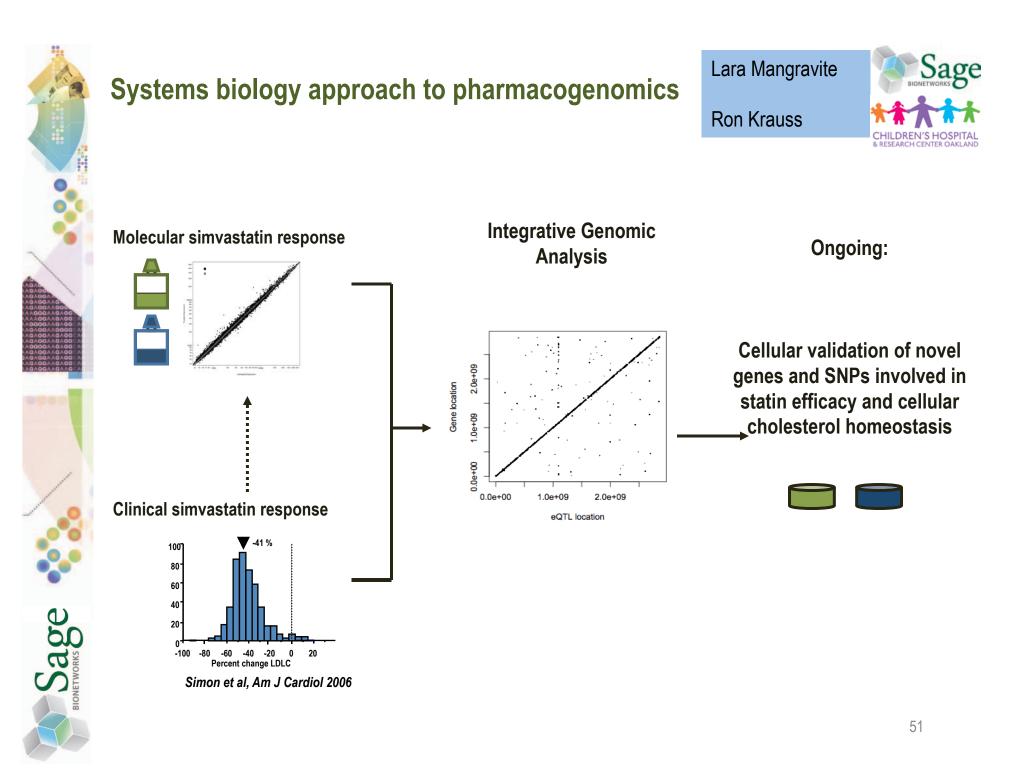
Diabetic beta-cell: lower expression of beta-cell transcription factors affecting the identified module, dedifferentiation, reduced insulin secretion and hyperglycemia





Next steps: Validation of hypothesis and suggested key genes in human islets





Examples: The Sage Non-Responder Project in Cancer

- To identify Non-Responders to approved drug regimens so we can improve outcomes, spare patients unnecessary toxicities from treatments that have no benefit to them, and reduce healthcare costs
- Leadership: Co-Chairs Stephen Friend, Todd Golub, Charles Sawyers & Rich Schilsky
 - AML (at first relapse)
 - Non-Small Cell Lung Cancer
 - Ovarian Cancer (at first relapse)
 - Breast Cancer
 - Renal Cell
 - Multiple Myeloma

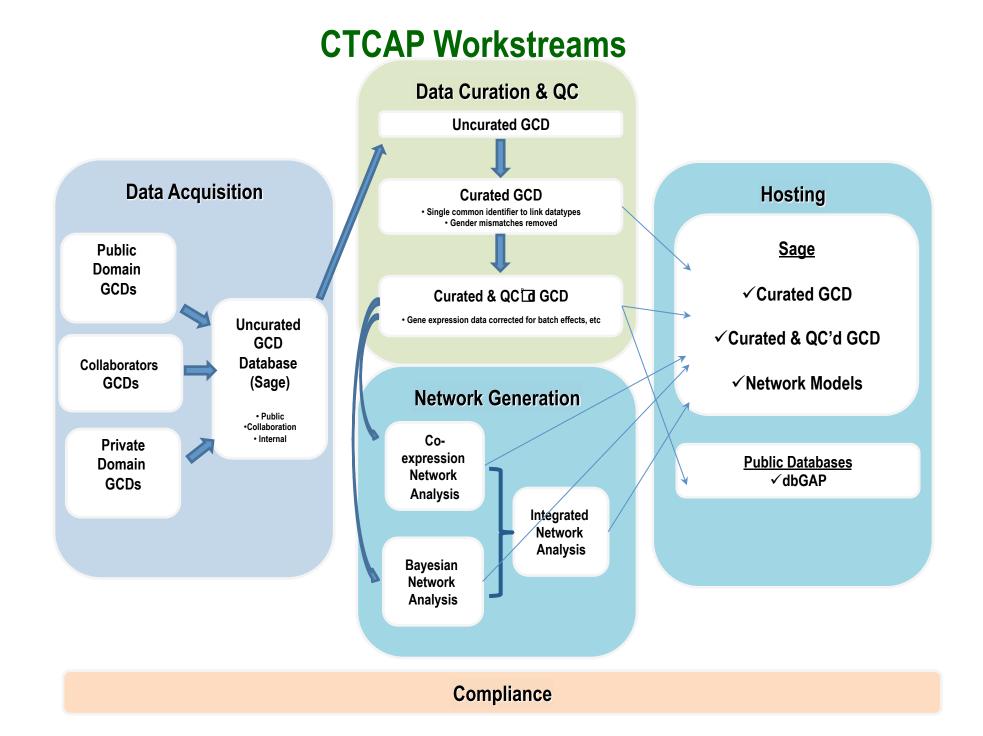
Initial

Studies:

Clinical Trial Comparator Arm Partnership (CTCAP)

Bridging the Chasm Between Microscope and Marketplace

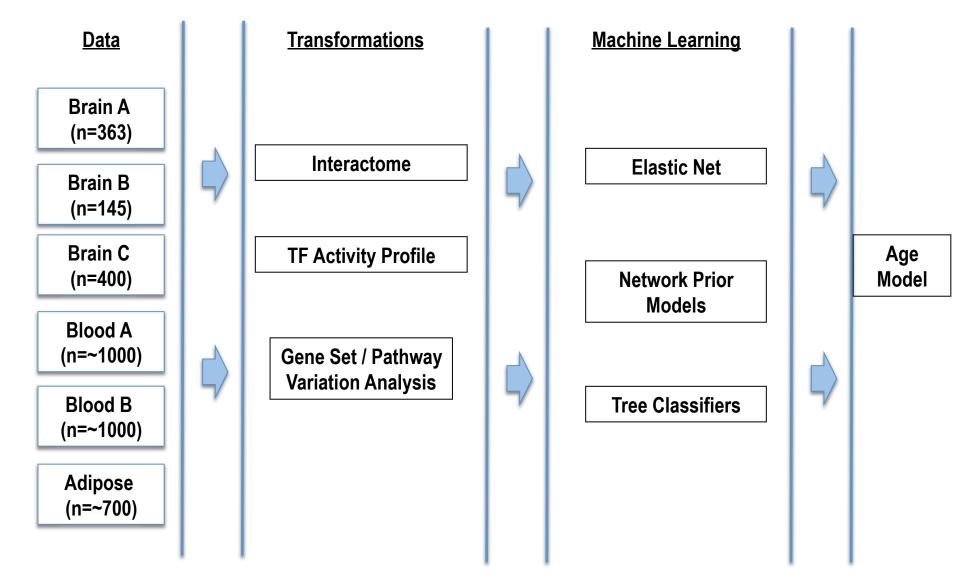
- Description: Collate, Annotate, Curate and Host Clinical Trial Data with Genomic Information from the Comparator Arms of Industry and Foundation Sponsored Clinical Trials: Building a Site for Sharing Data and Models to evolve better Disease Maps.
- Public-Private Partnership of leading pharmaceutical companies, clinical trial groups and researchers.
- Neutral Conveners: Sage Bionetworks and Genetic Alliance [nonprofits].
- Initiative to share existing trial data (molecular and clinical) from non-proprietary comparator and placebo arms to create powerful new tool for drug development.



Examples: The Sage Federation

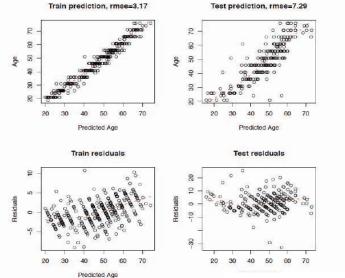
- Founding Lab Groups
 - Seattle- Sage Bionetworks
 - New York- Columbia: Andrea Califano
 - Palo Alto- Stanford: Atul Butte
 - San Diego- UCSD: Trey Ideker
 - San Francisco: UCSF/Sage: Eric Schadt
- Initial Projects
 - Aging
 - Diabetes
 - Warburg
- Goals: Share all datasets, tools, models
 Develop interoperability for human data

Human Aging Project

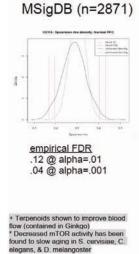


Preliminary Results

Adipose Age Prediction multivariate logistic regression model predicting age in human adipose data



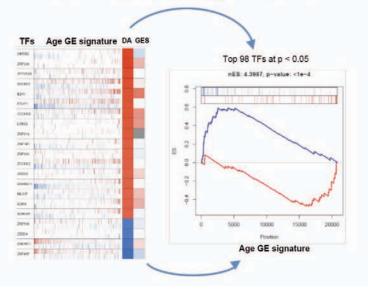
GSVA: Prefrontal cortex, normal (neg)



Rank	Geneset name	Spearman rho		
1+	KEGG_TERPENOID_BACKBONE_BIOSYNTHESIS	36		
2	BIOCARTA_CDC42RAC_PATHWAY	36		
4	BIOCARTA_ACTINY_PATHWAY	33		
8	KEGG_ALZHEIMERS_DISEASE	31		
12	ELVIDGE_HYPOXIA_BY_DMOG_DN	31		
16	WEINMANN_ADAPTATION_TO_HYPOXIA_UP	30		
19	BIOCARTA_AKAP95_PATHWAY	29		
20	BIOCARTA_EIF_PATHWAY	29		
23	KEGG_PARKINSONS_DISEASE	- 29		
27	ELVIDGE_HIF1A_TARGETS_UP	28		
30*	BIOCARTA_MTOR_PATHWAY	28		
31	ELVIDGE_HYPOXIA_DN	27		
40	WONG_MITOCHONDRIA_GENE_MODULE	27		
42	BIOCARTA_ETC_PATHWAY	27		
43	LU_AGING_BRAIN_UP	27		
44	REACTOME_ELECTRON_TRANSPORT_CHAIN	26		
48	BIOCARTA_PROTEASOME_PATHWAY	26		

Master Regulator Analysis Results

Master Regulator Analysis (MARINa) from Califano's lab.



Warburg Effect Studied by the Federation's Genomewide Network and Modeling Approach

Warburg effect: the association of aerobic glycolysis, an inefficient way for ATP generation, with cancer cell and their progression. Linked with rapidly dividing cells.

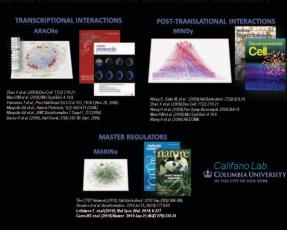
Two Key Questions:

- 1. Are cancer cells genetically decoupled from the altered metabolism that is seen in rapidly dividing cells?
 - 2. Is there evidence that cancer outcomes are associated with altered metabolic circuits?

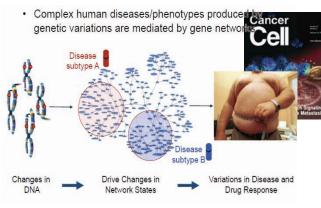
Federation S Genome-wide Network and Modeling Approach

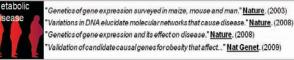
Califano group at Columbia

Reverse engineering of regulatory networks



Sage Bionetworks





Butte group at Stanford

Cell type-specific gene expression differences in complex tissues

Shai S Shen-Orr^{1,2,10}, Robert Tibshirani^{3,4,30}, Purvesh Khatri¹, Dale I. Bodian^{5,3}, Frank Staedtler⁶, Nicholas M Perry⁷, Trevor Hastie^{1,4}, Minnie M Sarwal

We describe cell type-specific significance analysis of mismanys (cSAR) in enalging differential gene arguession for each cell type in a biological angle from mismary data and nature cell-spin frequencies. First, see validated cSAR with predesigned mismers and then agained its whole-biological gene arguession fattants from studie gate-transplate Many Transplater relegions and these agained and the spin studies in predesigned the studies and then agained and the input of the spin studies and the agained part of the spin studies and the spin studies and the spin studies and the spin studies genes flatt were delensive and the charles.

The latter of the strength of

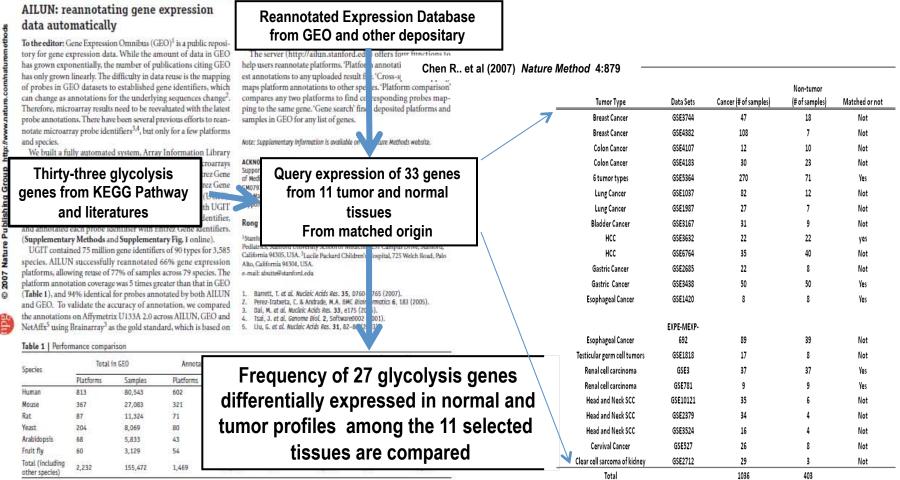
have assumed Figure 1.1 (sverview of cSAW, Bifferent cell types are denoted by circles, diamonts and hexagom, cSAW identifies cell type-specific differential expression, as shown by the answs on the right.

"Operator Livings, Superator Li Macholog y al terminojo, Department (Haili Monda al Diay and Department Statis, Statis Inventri Solari (Haine, Indeta Californi, S. Bornder Zoulegane), Neutri Brannandia, Lipintimos, Nei ney Jas. Sil-Bornder Designent, Savath Lattine is Erdelscellieven, Bard Stratura, Dimokel Information Californi, Elizard Papar, Dystanet el Molen, Bard Hainen, Statis, California, S. Stratura, Bard Stratura, Dimokel Information, Californi, S. Stratura, Bard Stratura, S. Stratus, Bard Stratus, S. Stratus, S. Stratus, Bard Stratus, S. Stratu

NATURE METHODS | WILJ 30.4 | APRE 2005 | 28

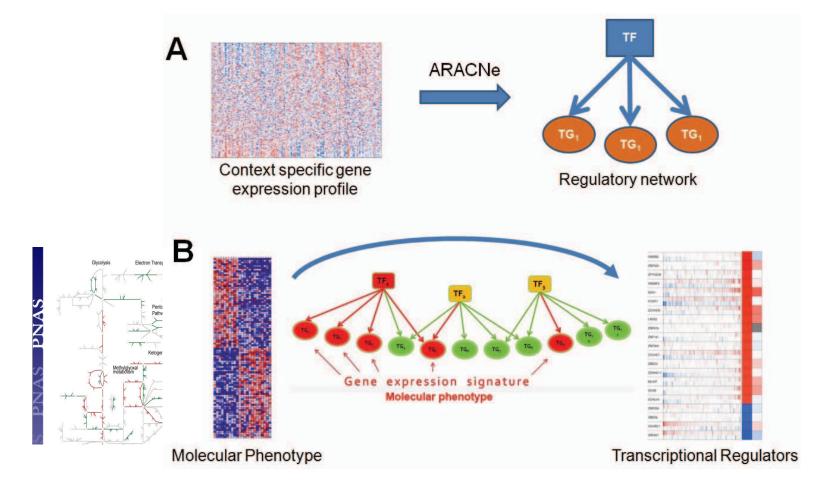
Characterizing Pattern of Glycolysis Genes in both Tumor and Normal Tissues of the Matched Origin

Andy Beck is approach (Butte Lab)



AILUN and GEO comparison based on the number of reannotated array platforms and the number of samples enabled for reuse

Deriving Master Regulators from Transcription Factors Regulatory Networks Glycolysis & Glycogenesis



Inferred Transcriptional Factors Regulating GGMSE in Tumors from Variety of Tissues

TFs for genes of interest (in Prostate cancer)

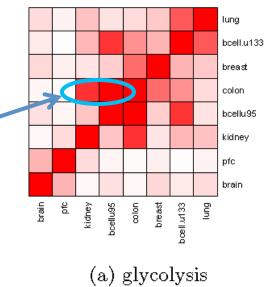
Gene of Interest	TFs that regulate this gene							
ALDOB	DMRTC2 NEUROD		ST18 ESRRB	VSX1 OTX2	TFAP2D HSF5	FOXR1 FOXG1	ISX AIRE	
PGK1	CARHSP1 ZNHIT3	ILF2 NME1-NI	MTA2 ME2	TFDP1	ZNF135	CEBPG		
ALDOA	ZC3H7B STAT6 MSRB2	NFE2L1 SUPT6H ETV6	THRA STAT5B ZMAT3	GATAD2B FOXJ2 TCFL5	CUX2	ZBTB4 ZSCAN23 MRPL28	NR1H2 MTA2 FOXK2	
ENO1 (TF)	TRIM25 NOTCH2 PA2G4	ZFP91 HNRNPAE NME2	TCF21 3 NANOG	ZNF135 ILF2 NFE2L3	RFX5 ZNF789 PRKDC	MTA2 NME1-NM	ZFR ME2	

Overlap between transcriptional regulators of metabolism

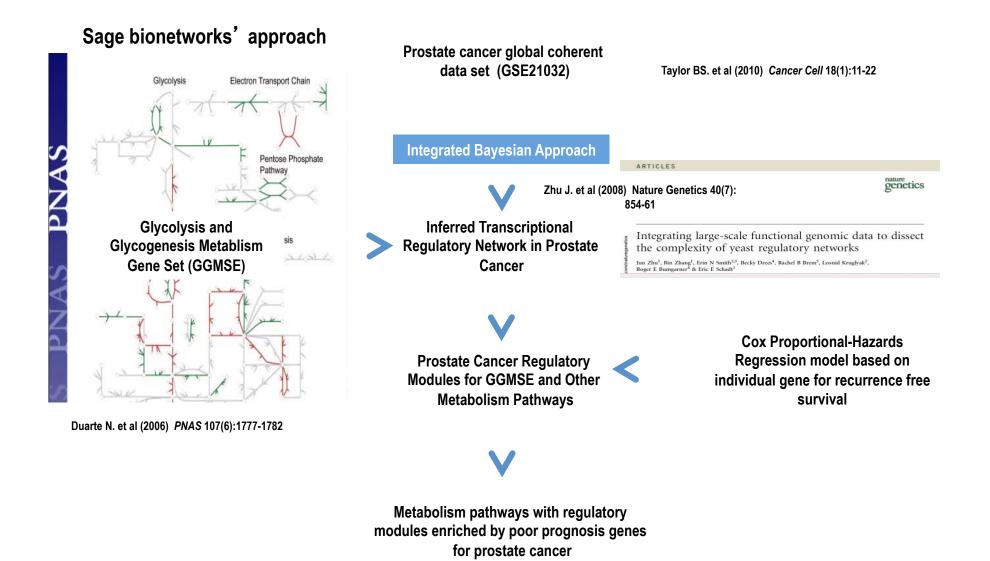
The following tables shows $-\log_{10}(p - value)$ from FET.

Glycolysis

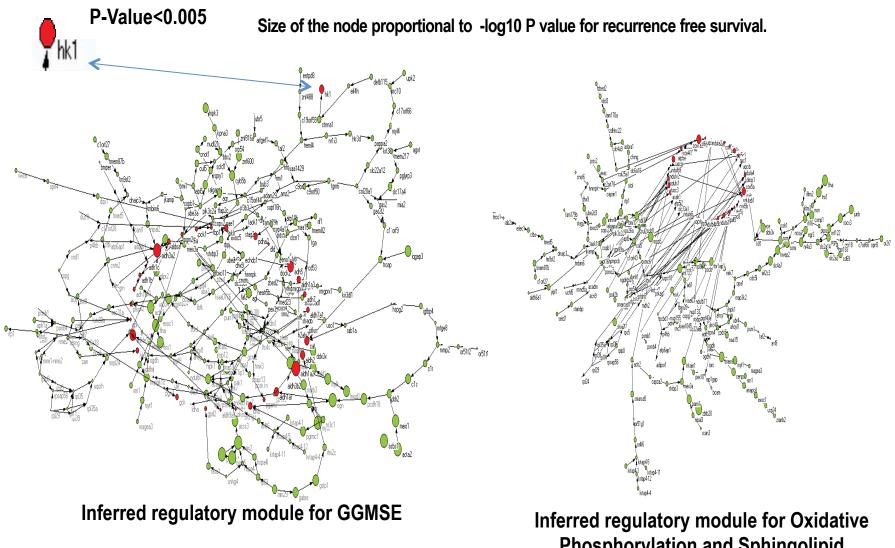
×	÷							
	brain	pfc	kidney	bcellu95	colon	breast	bcell.u133	lung
brain		1.28	0.14	0.54	0.17	0.67	0.37	0.02
pfc	1.28		0.65	0.21	0.09	0.28	0.07	0.24
k id ney	0.14	0.65		1.04	3.51	0.47	1.25	1.09
bcellu95	0.54	0.21	1.04		4.35	0.85	3.47	0.52
colon	0.17	0.09	3.51	4.35		2.50	1.87	0.65
breast	0.67	0.28	0.47	0.85	2.50		1.30	0.92
bcell.u133	0.37	0.07	1.25	3.47	1.87	1.30		2.85
lung	0.62	0.24	1.09	0.52	0.65	0.92	2.85	



Inferring Prostate Cancer Regulatory Modules for Glycolysis &Glycogenesis Metabolism Pathway



Genes Associated with Poor Prognosis are disproportionally found among the networks regulating the glycolysis Genes



>5 fold enrichment of recurrence free prognostic genes with the Glycolysis BN module than random selection (p<1e-100)

ferred regulatory module for Oxidative Phosphorylation and Sphingolipid Metabolism genes

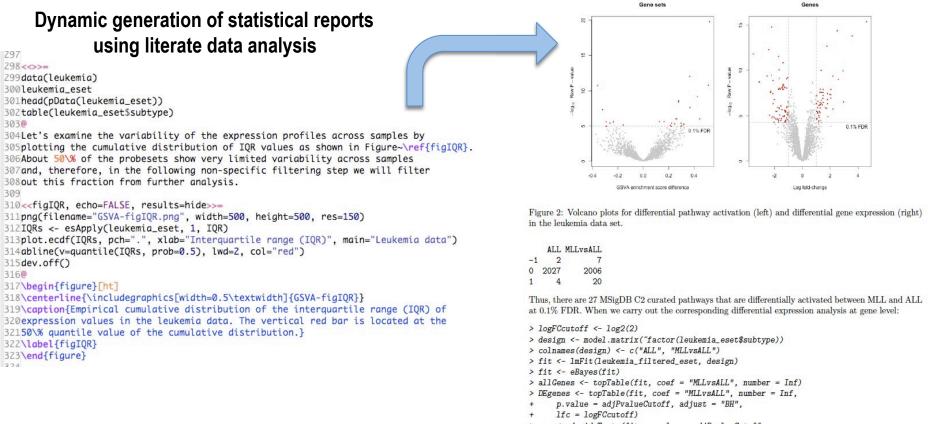
THE FEDERATION Butte Califano Friend Ideker Schadt

VS



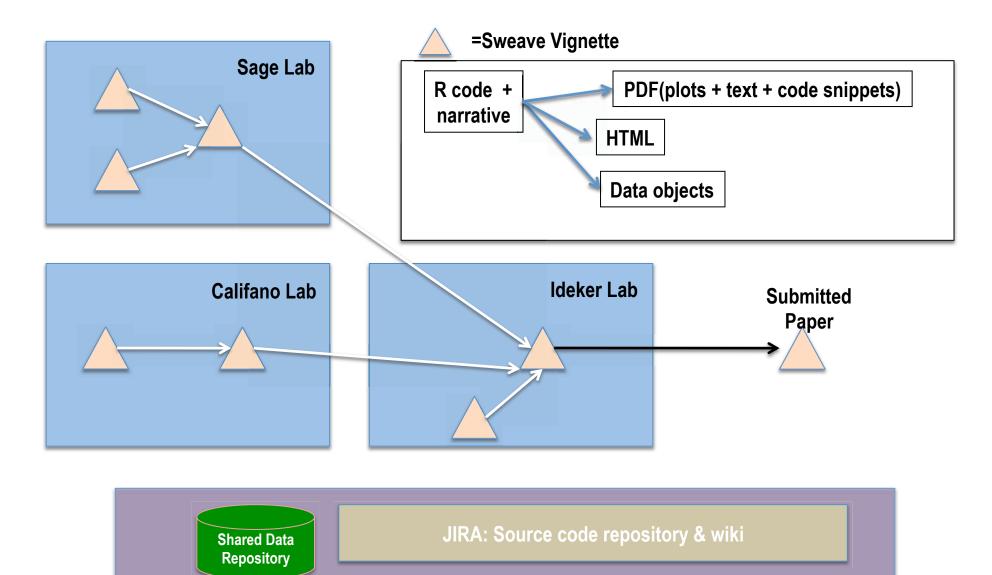
Reproducible science==shareable science

Sweave: combines programmatic analysis with narrative

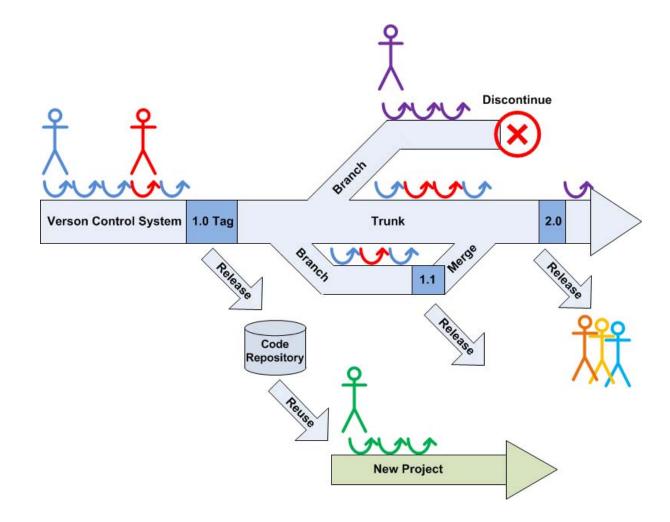


Sweave.Friedrich Leisch. Sweave: Dynamic generation of statistical reports using literate data analysis. In Wolfgang Härdle and Bernd Rönz,editors, Compstat 2002 – Proceedings in Computational Statistics,pages 575-580. Physica Verlag, Heidelberg, 2002. ISBN 3-7908-1517-9

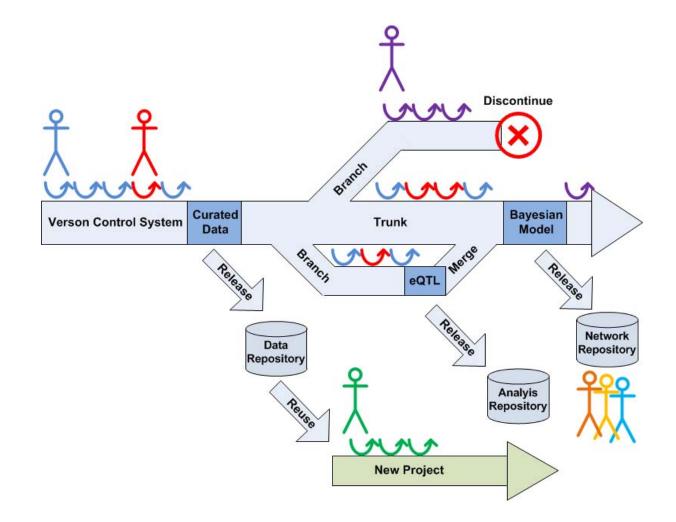
Federated Aging Project : Combining analysis + narrative



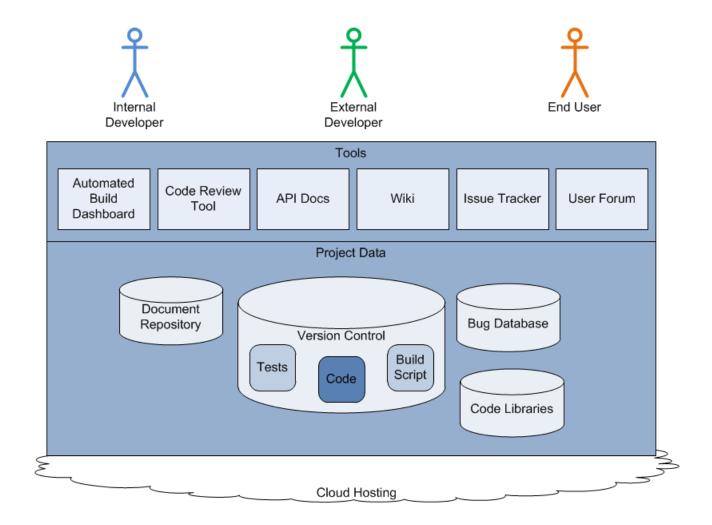
Evolution of a Software Project



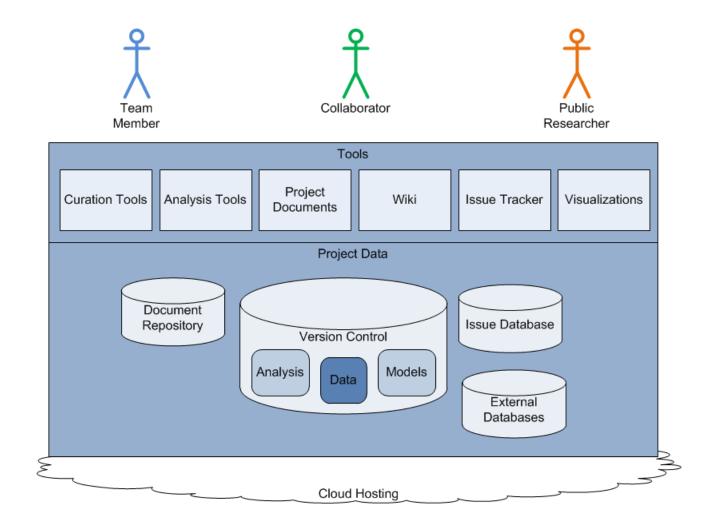
Evolution of a Biology Project



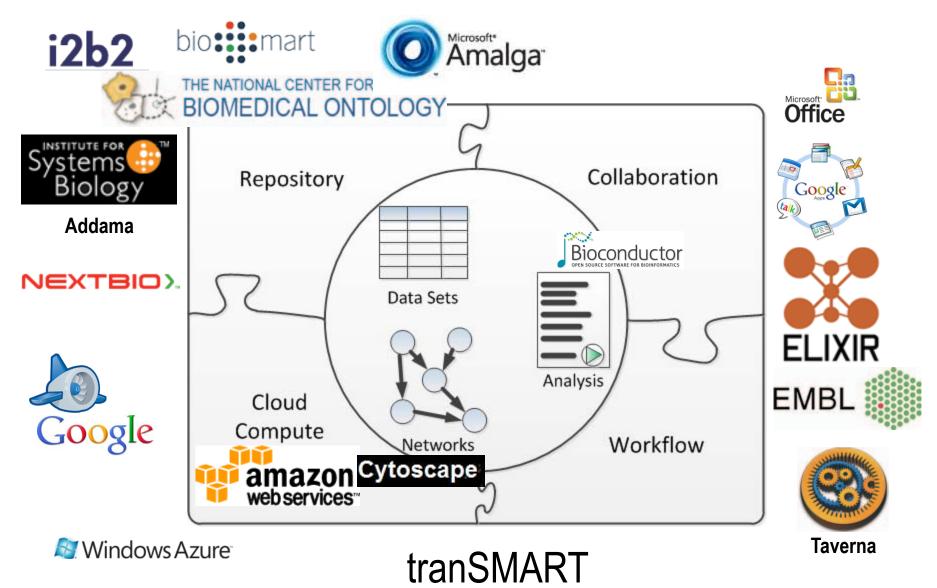
Software Tools Support Collaboration



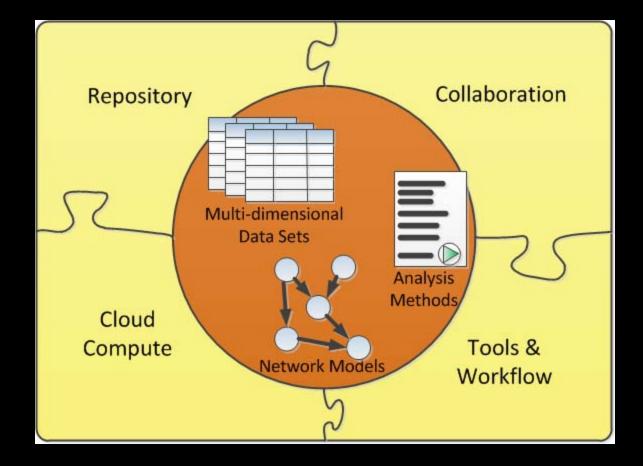
Biology Tools Support Collaboration

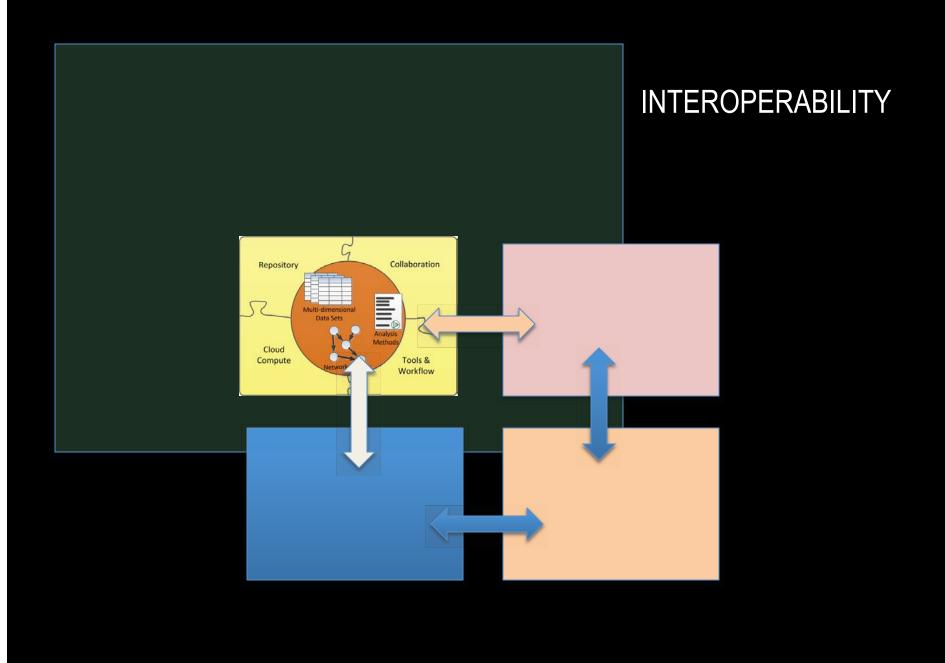


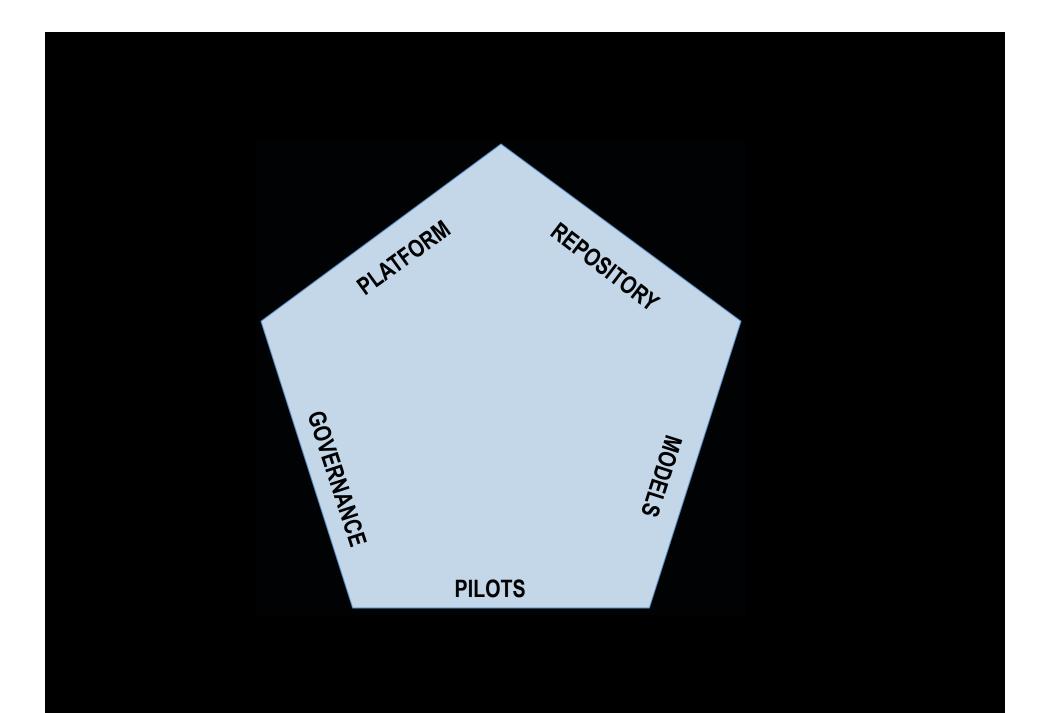
Potential Supporting Technologies

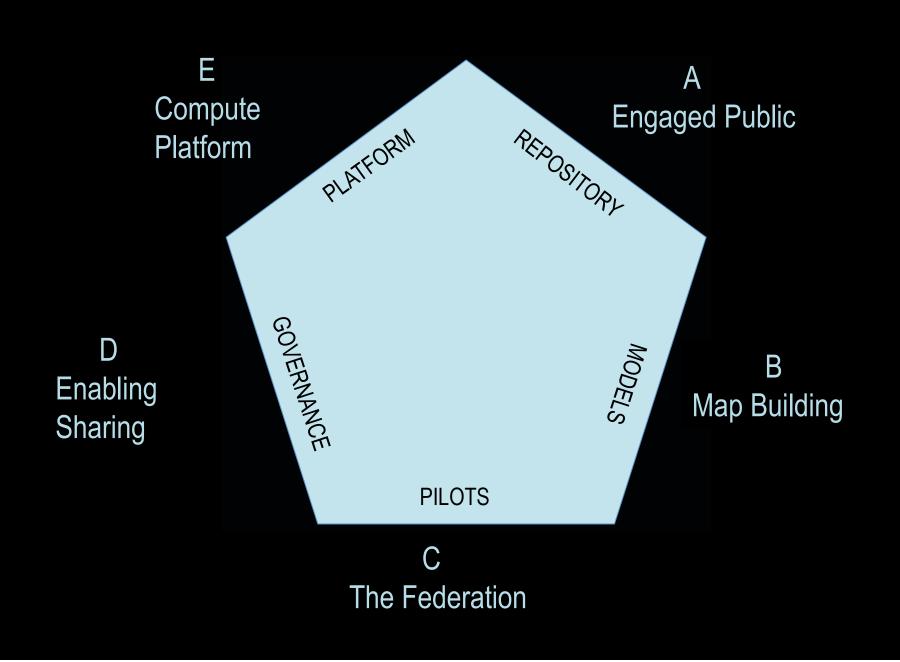


A Platform Node for Modelling









Sage Commons Congress

News 2010 Congress 2011 Commons Congress Announcement

2011 Congress Venue Prelimina

2011 CONGRESS VENUE

The 2011 Sage Bionetworks Commons Congress will be held at the Mission Bay Conference Center at UCSF an exciting new meeting and event destination centered in the University of California, San Francisco's new 43-acre life sciences campus for teaching and research. Located just south of downtown San Francisco, and convenient to Oakland and Berkeley, this stunning new building offers a world-class setting in the heart of Mission Bay.

Accommodation information will be available shortly.

Mission Bay Conference

http://sagecongress.org

SAGE BIONETWORKS TWEETS

- RT @genomicslawyer: In case yo missed it, @dgmacarthur has ported Genetic Future to @wiredsciblogs http://bit.ly/dZ6vpt Absolute mus read , 14 hours ago
- Cancer Commons: a new molecular model-based, patientcentric paradigm for translational medicine http://bit.ly/fefPVH.
 2011/01/18
- RT @GeneticAlliance: Should we all contribute DNA for research? Check out Biobank Bulletin http://ow.ly/3Bbe9 and tweet us your thoughts! 2011/01/13
- Biomarker Blues; G. Poste on "dismal patchwork of fragmented research on disease-associated

Arch2POCM

COMMENTARY

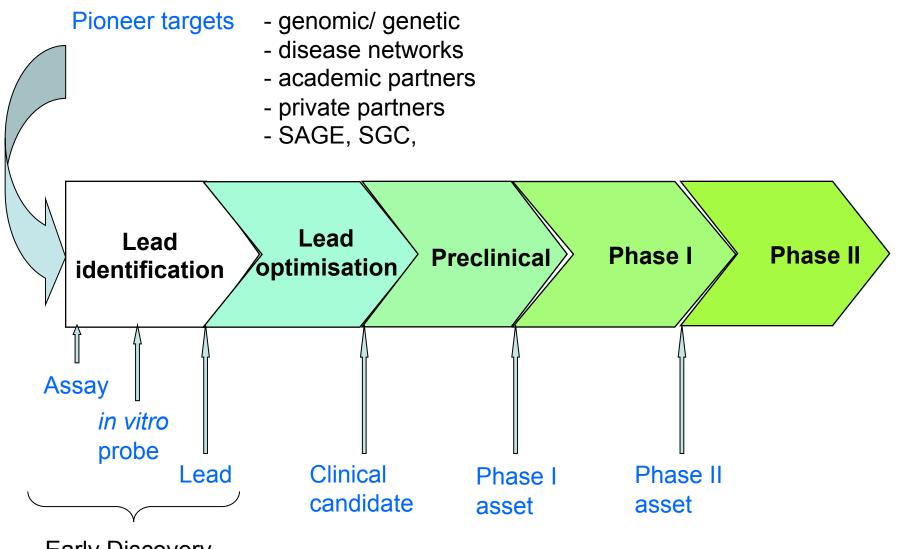
THERAPEUTICS DISCOVERY

The Precompetitive Space: Time to Move the Yardsticks

Thea Norman,¹ Aled Edwards,² Chas Bountra,³ Stephen Friend^{4*}

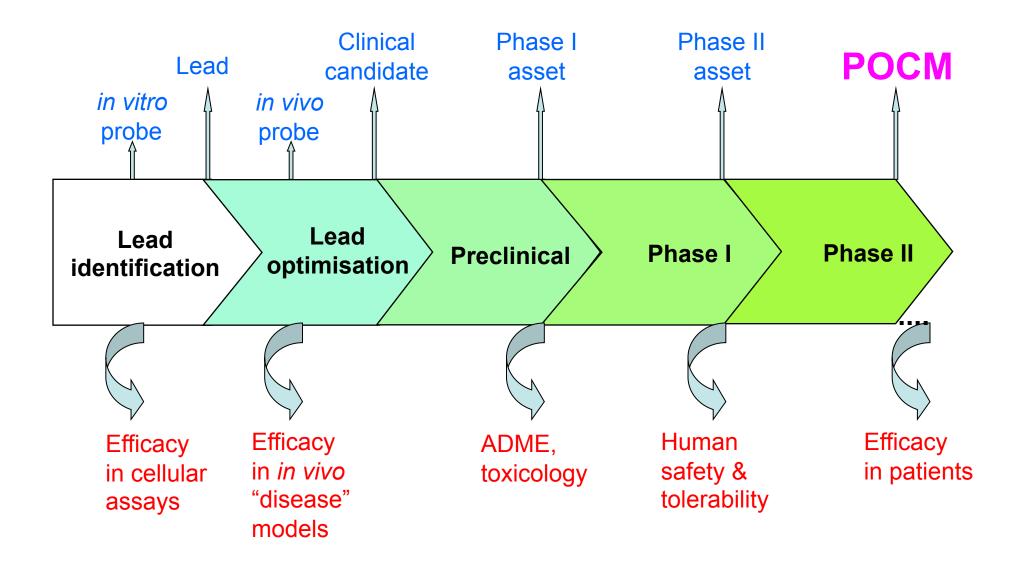
Industry, government, patient advocacy groups, public funders, and academic thought leaders met in Toronto, Canada, to set into motion an initiative that addresses some of the scientific and organizational challenges of modern therapeutics discovery. What emerged from the meeting was a public-private partnership that seeks to establish proof of clinical mechanism (POCM) for selected "pioneer" disease targets using lead compounds—all accomplished in the precompetitive space. The group will reconvene in April 2011 to create a business plan that specifies the generation of two positive POCM results per year.

Entry points



Early Discovery

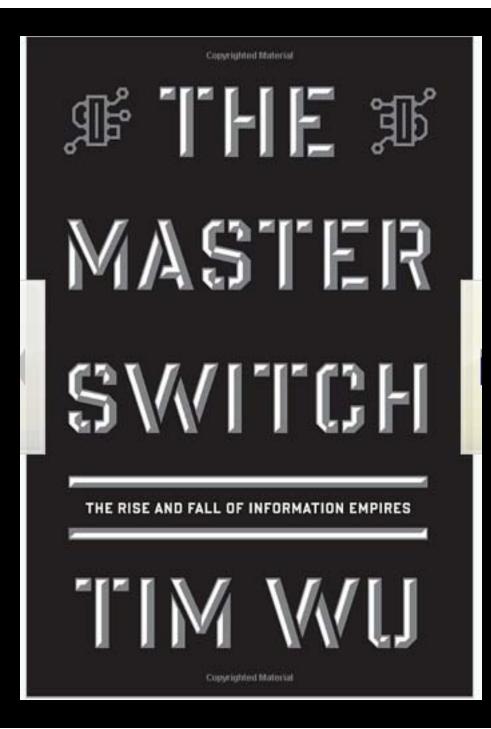
Reagents and publications will facilitate collaboration, more leveraged funds, improved disease maps and target discovery



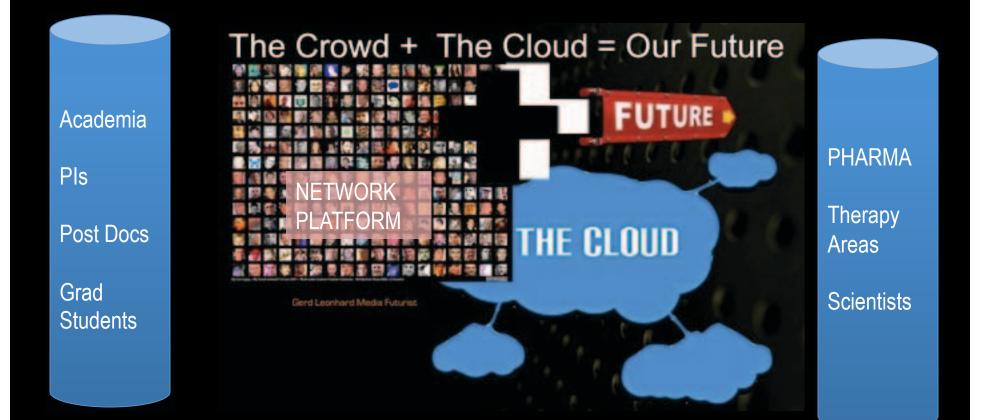
BETTER MAPS OF DISEASE USING DATA INTENSIVE SCIENCE

NOT JUST WHAT WE DO BUT HOW WE DO IT

POWER OF BUILDING A PRE-COMPETITIVE COMMONS FOR EVOLVING GENERATIVE MODELS OF DISEASE USING A PUBLIC PRIVATE PARTNERSHIP



Who will build the datasets/ models capable of providing powerful safety and efficacy insights?



Patients Physicians Citizens "Knowledge Expert"